
Honeynet Files
Editor: Bill McCarty, bmccarty@apu.edu

them and vice versa. They’re also
subject to attacks that could cause
them to cease operations temporarily
or permanently. An attacker could
compromise the system and gain root
access—that is, gain the ability to
control the system as if the attacker
were the system administrator.

Network administrators use sev-
eral methods to protect their net-
work. Firewalls, for example, control
the flow of traffic between the local
network and the Internet. Based on
the characteristics of the network
traffic such as requested services,
source and destination addresses, and
individual users, a firewall can decide
whether to let traffic pass through
the network.1 Firewalls can also be
used on end-user systems.

Another method employed to
protect networks is the use of an in-
trusion-detection system (IDS). The
administrator can place IDS sensors
at various points throughout the net-
work, including the interfaces be-
tween the local network and the In-
ternet, critical points within the local
network, or on individual systems.
An IDS is usually signature based,
meaning it looks for predefined sig-
natures of bad events; these signa-
tures typically reside in a database as-
sociated with the IDS. An IDS can
also perform statistical and anomaly
analysis of network traffic to detect

malicious intrusions. When it de-
tects malicious activity, it can then
notify the network administrator.2

Installing a honeynet within large
enterprise networks provides an addi-
tional security tool. Honeynets com-
plement the use of firewalls and IDSs
and help overcome some of the short-
comings inherent in those systems. In
addition, honeynets can also serve as
platforms for conducting computer
security research and education.

Georgia
Tech’s honeynet
Initially, we established the Georgia
Tech honeynet during the summer
of 2002 as a single computer, but
we’ve since expanded it to include
several different machines running
various operating systems. Figure 1
shows a configuration of the Geor-
gia Tech honeynet.

The Georgia Tech honeynet has
helped us find, on average, approxi-
mately 60 compromised machines
per month. These compromises in-
clude worm exploits as well as indi-
vidual systems targeted and compro-
mised by attackers. Whenever the
honeynet detects a compromised sys-
tem, it sends a report to Georgia Tech
network security personnel. In some
cases, network security personnel
were already aware of the compro-
mised machines, but sometimes our

report was the first news of an in-
fected system. Let’s look at two typical
case studies from our success stories.

A system with
a compromised
password
Our honeynet helped us identify a
system an attacker compromised by
obtaining a username and password,
something that is difficult to detect
with traditional methods. The sys-
tem the attacker connected to on the
honeynet was running Microsoft
NT 4 Workstation software. Several
days earlier, the same attacker com-
promised this same system by using a
Microsoft Internet Information
Server (IIS) exploit and setting the
system up as a warez server. The at-
tacker also set up a backdoor for later
use; several days after the initial com-
promise, the attacker connected to
this backdoor from another com-
puter within the Georgia Tech En-
terprise Network. We immediately
notified network security personnel
of this other potentially compro-
mised computer.

After completing an offline
analysis, network security personnel
found no indication that this pro-
duction machine had in fact been
compromised, yet this machine’s
owner wasn’t the person who con-
nected to the warez server on our
honeynet. The network security
personnel speculated that the at-
tacker obtained this machine’s pass-
word by using a brute-force attack.
The team instructed the user to
change his password by selecting a
more secure one and to discontinue
using his production machine’s pass-
word when establishing accounts on
other Web sites. They concluded

JOHN G.
LEVINE, JULIAN

B. GRIZZARD,
AND HENRY L.
OWEN

Georgia
Institute of
Technology

C
omputer networks currently connected to the

Internet are vulnerable to a variety of exploits that

can compromise their intended operations.

They’re subject to denial-of-service attacks, for

example, which prevent other computers from connecting to

Using Honeynets to Protect
Large Enterprise Networks

56 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/04/$20.00 © 2004 IEEE ■ IEEE SECURITY & PRIVACY

Honeynet Files

that detecting this compromised sys-
tem would have been very difficult if
they had just used their existing se-
curity measures instead of the hon-
eynet.

Characterization of
detected exploits
Any research effort requiring a copy
of an entire exploit session is well
suited to the use of a honeynet. Part
of our own research effort involves
using a honeynet to collect new
rootkit exploits. A rootkit is a set of
tools an attacker uses to retain access
to a system after it’s compromised.
Rootkits install a backdoor on a sys-
tem and usually have some function-
ality to enable the attacker to hide
activities and files.

Rootkits are available via down-
load from the Internet, but the hon-
eynet gives us an opportunity to col-
lect the ones that might not have
been previously seen or those not
publicly disclosed.

At 10:34 a.m. UTC on 1 June
2003, an exploit was launched
against a honeynet system on port 21
(ftp daemon) in an attempt to gain
root-level access. The ftp server run-
ning on the Red Hat Linux 6.2 ma-
chine was the wu-ftpd2.6.0(1) ftp
daemon, or the default ftp server.
Exploits that grant an attacker root-
level access for this particular service
are available on the Internet.

After successfully gaining access,
the attacker was able to install a
rootkit called r.tgz on the target sys-
tem. We don’t believe this particular
rootkit had been publicly analyzed
previous to this attack; we knew of
an ssh rookit called r.tgz, but its
characteristics, such as file size, dif-
fered from the rootkit installed on
the target system (see www.pack-
etfu.org/hpa.html).

The attacker extracted the ex-
ploit code within the r.tgz file and
then ran the exploit on the target
system. Figure 2 shows the actual
honeynet logs from the attacker’s
session. The r.tgz rootkit deletes all
traces of itself on the target system

after installation, but we were able to
reconstruct what the attacker ac-
complished by using the honeynet
logs from this exploit session.

Using the elements of a method-
ology for detecting unique rootkit
string signatures described in more
detail elsewhere,3 we detected some
unique string signatures in the binary
files that the r.tgz rootkit replaced.

We examined the captured
rootkit and discovered that it redi-
rected the system call table to an en-
tirely new system call table.4 Based
on additional analysis, we were fi-
nally able to uninstall and then rein-
stall this rootkit on the target system.
We concluded that r.tgz is a blended
rootkit that contains elements of the
INKIT kernel rootkit and the
hax.tgz binary rootkit. The INKIT
rootkit is based on SuckIT; the
hax.tgz rootkit is based on bigwar.tgz
rootkit (see www.honeylux.org.lu/
project/honeyluxR1/result/sub01/
report/hax.htm).

T he Georgia Tech honeynet re-
mains active and continues to

help secure the Georgia Tech net-
work. We have ongoing projects in-

cluding initiatives to help attract
more advanced threats. We’re also
looking at methods to recover from
compromises and will use the hon-
eynet as a testbed for this research.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 57

Internet

Layer 2
bridging gateway

eth0

eth1

eth2

Private network

Monitor

OtherWindows XPLinux

Honeypots

Figure 1. Georgia Tech honeynet. The honeypots are behind the layer 2 bridging
gateway, which bridges traffic between interfaces eth0 and eth1. All traffic is logged
on the bridge; interface eth2 can be used to monitor the traffic.

Figure 2. Honeynet logs. An attacker installed the
r.tgz rookit on 1 June 2003, and these logs from
that session show the installation process. We
were able to reconstruct the entire attack using
the honeynet logs.

Honeynet Files

References
1. E. Skoudis, Counter Hack, Prentice

Hall, 2002, p. 47.
2. S. Northcut et al., Inside Network

Perimeter Security, New Riders,
2003, p.5.

3. J. Levine, H. Owen, and B. Culver,
“A Methodology for Detecting
New Binary Rootkit Exploits,” Proc.
SoutheastCon, IEEE Press, 2003.

4. J. Levine, J. Grizzard, and H.
Owen, “A Methodology to Char-
acterize Kernel Level Rootkit
Exploits Involving Redirection of
the System Call Table,” Proc. 2nd
Int’l Information Assurance Workshop,
IEEE Press, 2004, pp. 107–125.

John G. Levine is a professor at the
United States Military Academy. His
research interests include network secu-
rity. Levine recently received a PhD in
electrical and computer engineering from
the Georgia Institute of Technology. Con-
tact him at levine@ece.gatech.edu.

Julian B. Grizzard is a PhD student in the
School of Electrical and Computer Engi-
neering at the Georgia Institute of Tech-
nology. His research interests include
network and operating system security.
Contact him at grizzard@ece.gatech.edu.

Henry L. Owen is a professor in the
School of Electrical and Computer Engi-
neering at the Georgia Institute of Tech-
nology. His research interests include
network security. Contact him at owen@
ece.gatech.edu.

58 IEEE SECURITY & PRIVACY ■ NOVEMBER/DECEMBER 2004

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

