
On a µ-Kernel Based System Architecture Enabling Recovery from Rootkits

Julian B. Grizzard, Henry L. Owen
{grizzard, owen}@ece.gatech.edu

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, Georgia, 30332-0250, USA

Abstract

We present a system architecture calledspine that
supports detection and recovery from many kernel-level
and user-level rootkits. The architecture forms a reliable
basis for an intrusion recovery system (IRS). The spine
architecture is a multi-tiered approach, relying on the
integrity of a smallµ-kernel based hypervisor for correct-
ness at the base level. Spine vertebrae are positioned at
each level in the system in order to overcome the semantic
gap in the understanding of system state. We discuss the
design of the system, highlighting the main advantages and
disadvantages from other approaches. A series of attacks
are conducted against the prototype system in order to test
for correctness and time to recover. Finally, some system
performance benchmarks are presented that show that a
small performance penalty is incurred from the increased
reliability.

Keywords: Operating Systems, Integrity, Rootk-
its, Recovery

1. Introduction

Society has become dependent on computer systems as
another pillar of our critical infrastructure, and this de-
pendence will continue to increase for the foreseeable fu-
ture. With this dependence comes the need to protect and
defend our computer systems. Various motives coupled
with countless accessible and vulnerable computers have
spurred numerous attacks. We have begun to address the
security needs of our computers building intrusion detec-
tion systems (IDS), intrusion prevention systems (IPS), re-
leasing system patches, and taking other evasive actions. In
this paper, we argue that in addition to developing methods
for prevention and detection of attacks, methods for veri-
fying integrity and recovering from attacks should also be
developed. We present a system architecture that is suitable
for integrity verification and recovery techniques against

one of the more difficult types of malware, which is rootk-
its. We term the system we envision an intrusion recovery
system (IRS). However, we only begin to unveil the vision
of an IRS in this work.

A rootkit is a set of tools used by an attacker to maintain
access to a system and hide activities. A rootkit does not
give an attacker the ability to break into an uncompromised
system. Instead, the attacker uses a rootkitafter he or she
has gained access to a system. Typically, the attacker will
need escalated privileges on the system in order to install
a rootkit. Rootkits have been under development for years
and have continued to increase in sophistication. We clas-
sify rootkits into one of two categories:user-levelrootkits
andkernel-levelrootkits.

User-levelrootkits can be considered the first generation
of rootkits and typically replace system binaries such as
ls, ps, andnetstatwith malicious binaries that appear as
legitimate binaries. Careful examination of the replaced
binaries reveals that they are in fact malicious in nature in
that they hide files, processes, or network connections of
the attacker’s choosing. Some levels of sophistication have
been achieved with user-level rootkits, such as matching
timestamps, inode numbers, file sizes, and checksums with
the original files or redirecting examination tools to hidden
copies of the original files. However,user-levelrootkits are
now fairly easy to detect and the attacker’s escalation in the
arms race for such rootkits has little room for improvement.

Kernel-levelrootkits can be considered second genera-
tion rootkits. These rootkits will insert malicious hooks
into the running kernel code. For instance, they will redi-
rect system calls, modify the virtual file system layer, or
modify kernel data structures. What makes these rootk-
its more difficult to detect is that there is not a widespread
availability of kernel integrity checkers. Tools and tech-
niques exists but are not presently widely deployed. We
have developed methods of manually detecting and recov-
ering from some of these type of rootkits previously [1].

Rootkits are often installed on high end servers, on
which an attacker has gained privileged access. End user
systems are also targets, and some worms have included

a rootkit in their payload. We believe that rootkits will
be a serious threat for the future and will continue to tar-
get servers and end user systems. Presently, conventionally
wisdom states that once a machine has been compromised,
it should be completely wiped clean and reinstalled. The
reasoning behind this argument is that there is no way to
know for sure that a comprehensive cleanup of the sys-
tem has been conducted. Complete reinstallation of sys-
tems may not be the most cost effective manner to recover
from rootkit installations. Therefore, we suggest an alter-
native method to complete reinstallation, which is to repair
the damage done by the rootkit and then verify the integrity
of the system. We present a system architecture that is suit-
able for systems such as servers and end user systems.

1.1. Overview

In section 2, we present the reasoning behind our ar-
chitectural design choices and suggest what we believe are
the minimal requirements of a hypervisor for our system.
Next, we discuss some of the details of our design in sec-
tion 3. We provide an overview of our prototype in section
4. We present the rootkits we have used in forming an at-
tack benchmark against our system in section 5. We show
some performance results of our IRS as compared to a na-
tive system and a nativeµ-kernel based system in section
6. In section 7, we provide an overview of related work that
has led to our presented architecture and highlight some of
the advantages and disadvantages of our approach. Finally,
we draw conclusions in section 8.

2. Architecture Reasoning

A rootkit is designed to hide the stateα, state associated
with the attacker’s activities, and the stateρ, state associ-
ated with the rootkit itself. Further, in a system with state
σ , the rootkit will conceivably modify any state inσ in or-
der to hide the state ofα andρ. It is noteworthy thatα and
ρ are subsets ofσ . Given this arrangement, it is important
to design an architecture that supports a stateλ , which is
isolated from stateσ and has the capability to verify the
integrity of σ .

A hypervisoris a small layer that runs below the operat-
ing system, directly on the hardware, providing one method
for obtaining the desired isolation. Litty discusses the use
of a hypervisor for an IDS [2]. We extend this notion
for our IRS system and further specify the requirements.
First, we believe that the hypervisor should provide min-
imal mechanisms sufficient to guarantee isolation and not
sacrifice significant performance. A hypervisor that meets
these requirements is aµ-kernel. The performance ofµ-
kernels has been of debate in past literature [3–5]. Liedtke
discusses howµ-kernels can achieve good performance

and that beliefs to the contrary are not necessarily true [5].
Further, Liedtke suggest three minimal requirements for a
µ-kernel in [5] as described below.

• Address Space:The µ-kernel is responsible for man-
aging address spaces. Three operationsgrant, map,
andflushare described so that memory can be man-
aged with good flexibility. Theµ-kernel must en-
force this management so as to protect its own address
space; however, theµ-kernel can grant or map mem-
ory to a user space memory manager and flush access
rights if necessary.

• Threads and Interprocess Communication:Threads
are tied to address spaces, and so basic thread sup-
port must be handled by theµ-kernel. Further, cross-
address-space communication must also be handled
by theµ-kernel.

• Unique Identifiers: Each task must have a unique
identification for efficient communication.

Our recovery system is based on Liedtke’s principals of
a µ-kernel. Figure 1 shows an overview of the architecture.
Theµ-kernel is the only component that runs in the kernel
space or the privileged execution mode. It runs directly on
the hardware providing a thin interface to the guest kernel.
The guest kernel and all processes it supports, P1 through
PN, run in user space at the unprivileged execution mode.
On the right side of the figure is the vertically integrated
IRS. We term this architecture thespinearchitecture be-
cause the components of the IRS, called the vertebrae, seep
throughout the host as noted by V0 through V4 in the fig-
ure.

One of our assumptions is that V1 will not be compro-
mised by the attacker. It is difficult to prove V1 is im-
mutable; however, we have designed the system toward the
goal of achieving this immutability from the perspective of
the guest system. The reasoning of how our approach can
reach this goal is deduced from code size, simplicity, and
limited interface. The code size of theµ-kernel is small,
on the order of 20,000 lines of code. Further, we believe
the µ-kernel is as simple as possible while achieving rea-
sonable performance and strict isolation. Finally, there is a
small interface that theµ-kernel provides to tasks, which is
on the order of 10 system calls.

Although we base our architecture on Liedtke’s sug-
gested minimal requirements for aµ-kernel, we add one
addition requirement as described below.

• Task Control:Task control includes the ability to in-
spect and modify another task’s control block, which
includes CPU registers. Specifically, it is important to
be able to inspect another task’s program counter. V1
should export this system call to V2 so that V2 can
verify that the guest kernel is operating correctly.

Secure Storage

Hardware

Microkernel

Guest Kernel V3

P1 P2 ... PN V4

V1

Ke
rn

el
 S

pa
ce

 U

se
r S

pa
ce

V0

Intrusion Recovery System

Horizontal Verification and Recovery
Ve

rti
ca

l V
er

ific
at

io
n

an
d

Re
co

ve
ry

V2

Figure 1. Overview of architecture

We further specify three requirements for the V2 com-
ponent. V2 should provide secure storage and protect the
guest kernel/V2 component, which includes verification
and repair if necessary.

2.1. Secure Storage

Secure storagemust be provided by V2 for the IRS. This
storage is used for storing a copy of the known good state,
calledγ, for the entire guest system. For reasoning, con-
sider this mechanism was not provided. Then, theγ must
be stored within the guest system as a subset of the stateσ .
Now, sinceγ is a subset ofσ , a rootkit would be able to
hide itself by modifyingγ, what the IRS system considers
to be known good state.

Each higher level in the IRS system requires read access
to γ in order to verify the integrity of its realm. V2 can
mapγ to the address space of itself, V3, and V4 in order
to achieve this goal. V2 must have access to an isolated
storage disk in order to maintain persistent state and for
large volumes of state such as a copy of the known good
file system.

Real systems will not have stagnant state. Therefore, it
is important to address the method for updatingγ. We be-
lieve that there should not be a direct call for updatingγ

from within σ as this violates the isolation requirement.
Instead, we propose the use of cryptographically signed
hashes coupled with state upgrades inσ . Each segment
of state inσ has a cryptographically signed hash associ-
ated with it. If a state change occurs, the IRS would check
the state against the cryptographically signed hash, which

should also be updated on a legitimate state change. The
cryptographically signed hash would exists withinσ , vis-
ible by the IRS, and the integrity would be guaranteed by
the signature. For this approach, the IRS must rely on the
authenticity of the signer. Further, the IRS must have pre-
viously shared a cryptographic key with the signing author-
ity. This approach is not complete and additional means of
updatingγ will be explored in future work.

2.2. Guest Kernel/V3 Verification

Theguest kernelruns directly above theµ-kernel. The
V3 component of the IRS exists in the guest kernel. V2
must be able to verify the integrity of the guest kernel and
the V3 component. Most of the hardware resources are
given to the guest kernel; however, the V1 and V2 compo-
nents maintain enough control over the hardware that re-
covery is feasible from most malicious actions taken by the
guest kernel.

It is conceivable that V2 could verify the entire stateσ .
However, asemantic gapexists between V2 andσ . For ex-
ample, it is difficult to interpret guest kernel data structures
(e.g. process tables) from the perspective of V2, although
possible. Instead of adding this complicated code to V2,
we believe a layered IRS approach should be used.

Each vertebrae in the IRS system understands how to
verify state at its level. However, with this architecture,
portions of the IRS system itself, namely V3 and V4, are
vulnerable to attack from within the guest system. There-
fore, each layer of the IRS system must be verified for in-
tegrity. We assume that V0, V1, and V2 are intact. V2 then
must verify that V3 is intact and V3 must verify that V4 is
intact. V3 is also responsible for verifying state of the guest
kernel, which is difficult to interpret from V2. For exam-
ple, V2 can easily verify that the guest kernel text is correct
as this is well defined, but data structures need access to
kernel functions in the guest kernel text for interpretation.
Thus, V2 must be able to verify the integrity of V3 in addi-
tion to the guest kernel.

2.3. Guest Kernel/V3 Repair

V2 must be able to repair the guest kernel and V3. Thus,
in addition to being able to read and verify the state, V2
must be able to write and repair the state. Again, V3 will
recursively repair and verify V4 and inspect data structures
in the guest kernel.

3. Method Details

We have set forth our reasoning for the spine architec-
ture and described minimal requirements as an extension of
Liedtke’s µ-kernel. In this section, we describe details of

the architecture and present methods and details for coping
with the threat of rootkits.

3.1. System Bootup

In this work, we focus on runtime requirements of a sys-
tem architecture to support an IRS. However, it is important
to discuss the bootup process briefly. The bootup process
must be secure. Theµ-kernel, V1, and V2 must be booted
from a read-only medium or equivalent fashion. Further,
the known good state of the system should be known at
bootup. An example method for achieving a secure boot
process is described by Arbaugh et al. in [6]. Other meth-
ods may also be suitable for the IRS.

3.2. IRS Levels

The spine architecture consists of four levels. The in-
tegrity of the system is verified by the matrix of bottom up
verification and horizontal verification. Below, the require-
ments of each level are discussed.

• V0: This level provides hardware support necessary to
meet the isolation requirements of the system. Some
have suggested that the hardware itself needs addi-
tional support to build secure systems [7]. We believe
that certain hardware enhancements would strengthen
the design of our system, particularly from a perfor-
mance perspective, and plan to explore such enhance-
ments in future work.

• V1: The second level in the IRS is a modification to
the µ-kernel to include process control. Specifically,
V2 should have support to inspect and repair the guest
kernel as needed.

• V2: The third level in the IRS is core to the reliabil-
ity of the system. It resides just above theµ-kernel.
V2 is responsible for (a) providing an interface to se-
cure storage for higher levels, (b) verifying the code
sections of the guest kernel/V3 for integrity and exe-
cution, and (c) repairing the guest kernel/V3 when the
integrity or execution are not correct.

• V3: The fourth level in the IRS resides in the guest
kernel. V3 is responsible for (a) verifying integrity of
state for V4 and for the state in the guest kernel that
V2 cannot easily interpret, denotedφ , and (b) repair-
ing V4 andφ if necessary. Examples of stateφ include
page tables, process tables and the corresponding pro-
cesses, and inserted modules.

• V4: The fifth level in the IRS resides as a user task
under the guest kernel. V4 is responsible for (a) veri-
fying the integrity of the state in the system that cannot

be easily interpreted by V2 or V3, denotedψ, (b) re-
pairingψ if necessary, and (c) providing an interface
to the user reporting the activity observed by the IRS.
The most important state inψ that V4 is responsible
for is the file system.

3.3. Sub-Level Verification and Repair

Integrity chainingconsists of a root link that verifies the
integrity of the next link which verifies the integrity of the
next link and so forth. An important algorithm is the pro-
cess for verifying the integrity of the next link in the chain.
There are two pieces of the algorithm we describe. Given
links C1 and C2, where C2 is above C1, C1 must have a
copy of the known good state for the code for C2. Then,
the first part of the algorithm is to verify the code for C2
is intact and repair if necessary. The second part of the al-
gorithm is to verify that C2 is executing as expected. Our
method for this verification is to periodically monitor the
scheduler and the instruction pointer for C2.

3.4. Memory Mapping

In order to monitor and repair sublevels, each level must
have visibility of the sublevel. Using Liedtke’s model of
granting, mapping, and flushing memory, we are able to
achieve this visibility [5]. Figure 2 shows the memory hi-
erarchy for the system. At the base, theµ-kernel owns all
memory. It maps a large portion of the memory to the guest
kernel, keeping some memory for internal structures and
secure storage. It is important that the memory distribu-
tions are mappings in order to retain visibility. The guest
kernel can in turn map portions of its memory, represented
by the dotted lines pointing to P1 and PN. Note that the
guest kernel maps a portion of its memory to the V4 pro-
cess. Thus, there is a chain of mappings from V1 through
V4 so that the IRS has visibility over the entire system.

3.5. Hashing and State Buckets

The intrusion detection portion of our system relies on
the ability to verify state. We considered two approaches
for this capability. We consider the best approach of the two
is to hash the current state and compare against a hash of
the known good state. A second method is to compare the
working state against the known good state byte by byte.
However, the way computer systems will be designed for
the near future, memory accesses are much more costly
than arithmetic instructions. Therefore, since the hashing
method requires roughly half as many memory accesses,
hashing is a much more efficient means to verify state. One
risk is that an attacker could manipulate state such that the
hash does not change; however, this is nearly impossible

microkernel/V1

guest kernel/V3

P1 PN V4

map

map

V2

map

Figure 2. Memory Hierarchy

for good hashing schemes.
One approach to hash all of the state in the system is to

divide the state into buckets. For a given state S, where any
level L can be responsible for maintaining state S, L divides
the state S up in to N buckets. L maintains an independent
hash for each bucket. Then, for any bucket in N, L can
verify the integrity of that bucket. One of the benefits of
comparing state byte by byte is that the exact state that has
changed will be detected. When hashing the entire state
S, only a binary result specifying the validity of the entire
state is computed. However, using the bucket approach,
benefits of both hashing and byte by byte comparison can
be used.

There are a number of possibilities that arise when us-
ing the bucket algorithm to verify state. First, consider that
one of the important goals of the system is to maintain high
performance or minimize the CPU cycles consumed by the
IRS. To achieve this goal, not all of the state in the sys-
tem can be verified in one sweep as performance concerns
such as latency would be harshly affected. By using the
bucket algorithm, small sections of the state can be veri-
fied quickly in one sweep. This would enables an algo-
rithm in which all buckets are independently and period-
ically checked over time. Further, in order to thwart an
adversary, a random sequence of bucket checking can be
conducted.

3.6. Rootkit Repair

The IRS must not only detect an intrusion, but must also
recover from the intrusion. We focus on the aspect of re-
covering from rootkit type intrusions, although there are
numerous other factors involved in an intrusion that must
be considered for a comprehensive IRS. Most importantly,
if a rootkit is installed on a computer, an attacker must have
gained access to that computer by some other means. The

IRS must stop the intruder from using his previous method
for reentry into the system. Below, we discuss methods for
recovering from user-level and kernel-level type rootkits.

3.6.1. User-Level Rootkit

Current and future user-level rootkits replace system bi-
naries, add malicious utilities, change configuration files,
delete files, or launch uploaded processes. Repairing the
damage done by a user-level rootkit is not difficult if
the extent of the damage is understood. We believe that
the extent of the damage can be understood if a copy
of the known good state is available. The algorithm is
then to compute the differences between the known good
state and the current working state. For each difference,
copy the known good state over the current working state.
This yields parings of the form action/reaction:<file
replaced>/<restore original>, <utility added>/<remove
utility>, <config change>/<restore config>, <file
deleted>/<restore original>, <malicious process>/<kill
process>, and so on.

3.6.2. Kernel-Level Rootkit

Abstractly, kernel-level rootkits are similar to user-level
rootkits. They replace presumably good state with ma-
licious state. However, the details of kernel-level rootk-
its are much more complicated than user-level rootk-
its. Kernel-level rootkits modify running kernel code,
which can drastically effect the stability of the system.
Previously seen rootkits will modify the system call ta-
ble, virtual file system, and kernel data structures. Fu-
ture rootkits will likely attack these vectors but will
also conceivably hide their presence using more sophis-
ticated means. For example, the page table data struc-
tures could be modified to redirect the entire kernel
such that static checks against the previous kernel ad-
dresses would remain valid. For simple redirections, the
same algorithm for repairing user-level rootkits can be
applied to kernel-level rootkits where example pairings
would be: <system call redirected>/<restore original>,
<vfs redirected>/<restore original>, <malicious module
inserted>/<remove module>, and so on. However, other
complications exists with kernel-level rootkits. For in-
stance, memory allocated to a malicious redirection must
be reclaimed. As for attacks such as page table redirec-
tions, these can be detected and repaired by the V2 compo-
nent. For more sophisticated structures, the V3 component
can periodically perform consistency checking of the data
structures . The extent of methods for recovery from all
kernel attacks will be the results of future work. One im-
portant complication is highly dynamic structures.

while(true)
{

for(i = 0; i < num_buckets; i++)
{

delay(sleep_time);
if(bad_hash(buckets[i])
{

repair_bucket(i);
sleep_time = ADAPT_HIGH;
count = 0;

}
}
if(sleep_time > ADAPT_LOW)
{

if(count > BACKOFF_SCALE)
{

sleep_time--;
count = 0;

}
}
count++;

}

Figure 3. Adaptation Algorithm

3.7. Threat Adaptation Model

Under normal operations, the IRS should not tax the sys-
tem very heavily. Most of the CPU cycles should go to the
system. However, in the event of an attack, we believe that
the IRS should receive more CPU cycles. While under at-
tack, the most important objective is to recover from the
attack. We also believe that the likelihood of detecting in-
trusions is significantly increased after the initial detection
point. Based on these assumptions, we present the algo-
rithm in Figure 3 for monitoring the state of the system.

For simplicity, the presented algorithm shows sequen-
tial checking of buckets and represents checking at each
level in the system. Under normal operations, sleeptime
is set to a reasonable rate so that performance is accept-
able. However, in the event that an inconsistency is de-
tected (badhash()), first the consistency is repaired, sec-
ond the sleep time is set to a more adaptive level that is
a smaller amount of time, and third the iteration count is
reset. After increasing the alert level, the system will re-
main at that level through BACKOFFSCALE iterations of
checking the entire state. In the event that more inconsis-
tencies occur, the count of iterations will be reset to zero
again. If no more inconsistencies occur, then the system
will slowly back down to the low adaptive level after (num-
ber of alert levels)*BACKOFFSCALE iterations.

3.8. Limitations

The design and reasoning of our architecture may work
for many situations and will add an element of protection.
However, there are a number of limitations to our design
that have not been fully addressed in this work. First, un-
derstanding the known good state of a system is not trivial.

Large portions of the system work well for our approach.
However, password file changes, legitimate configuration
changes, log files, and other dynamic collections of state
are problematic. Such files need special attention. Second,
an attacker may damage a system so that it is beyond re-
pair, or it may be difficult to repair the damage done with-
out sacrificing the stability of the system. So, there may
be circumstances in which the system must be rebuilt, but
arguably the proposed system can recover correctly from
many intrusion sequences. Finally, our system focuses on
recovering from an intrusion after it has occurred. There-
fore, it is possible that costly damage is done, such as stolen
information, even if the system is able to repair itself.

4. Implementation

Based on our design and reason, we have implemented
a large portion of our design and experimented with the
performance and recovery capabilities of the system. We
have leveraged the work of an implementation of Liedtke’s
µ-kernel specification, known as Fiasco [8]. This kernel
serves as ourµ-kernel. Furthermore, a port of the Linux
kernel to theµ-kernel architecture has been done [9]. We
use this kernel as our guest kernel. Our implementation has
been done for the i386 architecture.

We have created basic V1, V2, V3, and V4 components.
The V2 component verifies that the guest kernel text is not
modified including data structures such as the system call
table and the virtual file system structures. The V2 com-
ponent also has secure storage that is completely isolated
from the rest of the machine. The V3 component does some
minimal consistency checking. Finally, the V4 component
monitors the file system and has the capacity to undo il-
legitimate changes and some other consistency checks for
the process listing verses file system listing. We have only
partially implemented the vertical integrity checking, such
as checking to make sure the V4 user space process is run-
ning.

We have used the sha1 implementation for our hashing
algorithms. This hashing algorithm is used in the V2 and
V4 layers. The sha1 algorithm may not be the most secure
hashing algorithm, as current investigations have claimed,
but another hashing algorithm could easily be replaced in
our implementation.

Some things that we have not yet implemented include
exporting the secure storage interface to the higher layers,
implementing persistent storage, and enforcing a secure
boot process. Also, some details in the system are more
sticky in reality than in theory. For instance, memory man-
agement on i386 computers is complicated by various holes
and legacy backwards compatible hardware. Although we
have run into a number of complicated issues, we do think
with reasonable amount of effort it is possible to build a

mature and reliable system.

5. Attack Results

In order to test our system against rootkit attacks, we
collected a representative assortment of rootkits that exists
presently. Our set of rootkits may not cover all possible at-
tacks made by rootkits, but we believe it does cover a ma-
jority of known attack techniques in use today. The listing
of rootkits we used to develop our test can be seen in Table
1. We choose half kernel-level rootkits and half user-level
rootkits with some rootkits having elements of both kernel-
level rootkits and user-level rootkits. We attacked the sys-
tem and observed the recovery capability. Some rootkits
did not port to our architecture and so we were unable to
test them. All rootkits were detected on the order of min-
utes after installation. The time to recovery was on the or-
der of seconds.

6. Performance

We have done some performance analysis of our system
comparing the following systems: native Linux, L4Linux,
L4Linux with spine and low adaptation, L4Linux with
spine and high adaptation. L4Linux is the guest kernel im-
plementation that runs on top of the Fiascoµ-kernel. All
tests were conducted on a Pentium IV 3 GHz machine with
1 GB of memory. For the spine architecture, we divided
the memory evenly between the secure storage area and the
guest kernel.

The first test we present shows the adaptive nature of
the system. Figure 4 shows a series of impulses over time.
Each impulse represents the initialization of an integrity
check of the system. At the point where the impulses be-
come solid, a rootkit was installed on the system. No other
attacks were made against the system during the shown
time frame. As time progresses after the attack, the system
slowly adapts back to a normal level of integrity checking.

Figure 5 shows the number of bytes transferred per sec-
ond using a TCP/IP connection. The system acted as a TCP
sink and another identical Linux system served as a TCP
source for each test. The TCP source sent packets of length
1500 with no delay for a period of 60 seconds. There was
not much performance loss from the native system as com-
pared to the adaptive L4Linux with spine. The difference is
3%. We expected to see a bigger performance loss. How-
ever, our current implementation does not schedule V1-V4
with any priority over other events. So, the networking
code gets priority and this is why even the adaptive system
performs well.

Figure 6 shows the amount of time required to compile
a stock Linux kernel. There is a performance lost notice-

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 0 5e+08 1e+09 1.5e+09 2e+09 2.5e+09

In
te

gr
ity

 C
he

ck
 Im

pu
ls

es

Time

Figure 4. Adaptation after rootkit install

Figure 5. Number of bytes transmitted per second

able in this figure. A loss of 12% is incurred while the
system is in its most adaptive state. This performance loss
may be acceptable given the higher degree of assurance that
the system is operating as expected. Also, the unmodified
L4Linux system only incurs an 8% performance loss.

7. Related Work

In past literature, much work on operating system archi-
tecture has focused on performance, flexibility, and exten-
sibility. Security has also been discussed mostly focused
on safety. The exokernel was an operating system designed
around building a small programmable machine on top of
the hardware so that mechanisms provided by the machine
could be exported and not policy [4]. These goals are close
to what we desire for our architecture. We want theµ-
kernel to enforce a policy of integrity but nothing else. The
SPIN architecture provides a monolithic approach for flexi-
bility [3]. Although many have argued that aµ-kernel can-
not compete with a monolithic kernel in terms of perfor-
mance, Liedtke shows that these arguments may be based
on results from improper implementations [5].

Rootkit Type Description
knark Kernel-Level System call table entry redirection.
adore-ng Kernel-Level Virtual File System Layer redirection.
sucKIT Kernel-Level System call table redirection.
zk Kernel-Level System call table redirection.
r.tgz Kernel/User-Level Blended rootkit captured on honeynet.
lrk4 User-Level Replaces binaries; includes sniffer.
lrk5 User-Level Later version of lrk4.
tOrn User-Level Replace binaries; mimics timestamps.
ark User-Level Replace binaries; no source code available.

Table 1. Rootkits used to design testing algorithms.

Figure 6. Linux kernel compile time in seconds

More recent literature has discussed virtual machine
technologies. Recent virtual machine research focuses on
running multiple operating systems on the same machine.
Xen is an architecture that scales beyond previous virtual
machine architectures by disregarding the need to fully em-
ulate the underlying architecture [10]. Aµ-kernel can be
used as a virtual machine monitor. Our implementation is
based on a port of the Linux kernel to aµ-kernel architec-
ture [9]. The performance results show that the L4Linux
kernel approaches the performance achievable by native
Linux [11]. We choose aµ-kernel approach over the virtual
machine approach because we wanted the simplest archi-
tecture that does not sacrifice performance and support for
multiple operating systems increases the complexity. How-
ever, the virtual machine architecture is a reasonable archi-
tecture for our design criteria.

Other work has suggested using virtual machines for se-
cure architectures. Terra is a virtual machine based archi-
tecture that suggests applications should be run in different
compartments so that they cannot tamper with each others
resources [12]. Litty suggest the use of a hypervisor for an
intrusion detection system [2], and we build upon the sug-
gestion for our architecture. Arbaugh et al. demonstrate

how a system can be booted in a secure and reliable man-
ner through the use of cryptography hash checks for each
layer from the BIOS until the system is operational [6]. We
believe that some form of a secure boot process such as
Arbaugh’s must be part of our system.

Candea et al. have discussed the possibility of build-
ing systems that are designed to recover rather than build-
ing systems designed to never fail [13]. Given that avail-
ability is related to mean-time-to-fail and mean-time-to-
recover, they point out that the availability of systems could
be increased if we reduce the mean-time-to-recover. Con-
ventional recovery methods for recovering from rootkits is
complete format and reinstallation. This may not be the
quickest mean-time-to-recover; we have presented one pos-
sible alternative.

We rely on hashing algorithms for verifying the integrity
of state. Tripwire is a notable work that presents the idea
of known good state and hashing as a means to verify in-
tegrity [14]. Tripwire focuses on integrity of file systems;
we extend this notion to the entire system.

Some other recent work has been conducted verifying
the integrity of rootkits. Petroni et al. have designed Copi-
lot, which consists of a PCI add-in card that is capable of
scanning the hosts memory [15]. Their work focuses on de-
tection of kernel-level rootkits, and reporting any events to
a monitoring station via an interface on the PCI card. The
advantages of their approach include that they can achieve
hard isolation with hardware, do not need to modify the
operating system, and do not sacrifice much performance.
The disadvantages of their approach include the need for
specialized hardware, the lack of visibility inside the OS,
and the lack of visibility of CPU registers. We geared our
architecture toward a software approach.

8. Conclusions

We have presented a system architecture that can sup-
port an IRS. We specifically focused on an architecture that

is capable of recovering from rootkits, which we consider
to be one of the most difficult types of malware to detect
and repair. The specified system is one approach to re-
covering from a compromise in which a rootkit has been
installed. The IRS we have specified and partially imple-
mented is not comprehensive, but it does lay the framework
for such a system. Some performance analysis and attack
scenarios were carried out on a prototype of the system.
It was found that for a small penalty in performance, the
system is able to provide a higher level of assurance and
reliability.

9. Acknowledgments

We would like to acknowledge the L4 Fiasco group at
the Technische Universität Dresden for building the L4 Fi-
ascoµ-kernel and porting the Linux kernel to the L4 archi-
tecture. They were also very helpful with answering our
questions and debugging our problems. Additionally, we
would like to thank Jessica Frame and Andrew Davenport
for their thoughts and comments.

References

[1] J. B. Grizzard, J. G. Levine, and H. L. Owen, “Re-
establishing trust in compromised systems: Recovering
from rootkits that Trojan the system call table,” inProceed-
ings of 9th European Symposium on Research in Computer
Security, pp. 369–384, Springer, September 2004.

[2] L. Litty, Hypervisor-Based Intrusion Detection. PhD thesis,
University of Toronto, 2005.

[3] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M. E. Fi-
uczynski, D. Becker, C. Chambers, and S. Eggers, “Extensi-
bility, safety and performance in the spin operating system,”
in Proceedings of the Fifteenth ACM Symposium on Operat-
ing System Principles, ACM, December 1995.

[4] D. R. Engler, F. Kaashoek, and J. O. Jr., “Exokernel: An
operating system architecture for application-level resource
management,” inProceedings of the Fifteenth ACM Sym-
posium on Operating System Principles, ACM, December
1995.

[5] J. Liedtke, “Onµ-kernel construction,” inProceedings of
the Fifteenth ACM Symposium on Operating System Princi-
ples, pp. 237–250, ACM, December 1995.

[6] W. A. Arbaugh, D. J. Farber, and J. M. Smith, “A secure and
reliable bootstrap architecture,” inProceedings of the IEEE
Symposium on Security and Privacy, pp. 65–71, May 1997.

[7] D. Lie, C. A. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. C. Mitchell, and M. Horowitz, “Architectural support for
copy and tamper resistant software,” inArchitectural Sup-
port for Programming Languages and Operating Systems,
pp. 168–177, 2000.

[8] “The fiasco microkernel.” http://os.inf.
tu-dresden.de/fiasco/ , September 2004.

[9] “L4linux.” http://os.inf.tu-dresden.de/L4/
LinuxOnL4 , November 2004.

[10] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield, “Xen and
the art of virtualization,” inProceedings of the nineteenth
ACM Symposium on Operating Systems Principles, pp. 164–
177, ACM Press, 2003.

[11] H. Härtig, M. Hohmuth, J. Liedtke, S. Schōnberg, and
J. Wolter, “The performance ofµ-kernel-based systems,” in
Proceedings of the Sixteenth ACM Symposium on Operating
System Principles, ACM, December 1997.

[12] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and
D. Boneh, “Terra: a virtual machine-based platform for
trusted computing,” inProceedings of the nineteenth ACM
Symposium on Operating Systems Principles, pp. 193–206,
ACM Press, 2003.

[13] G. Candea, A. B. Brown, A. Fox, and D. Patterson,
“Recovery-oriented computing: Building multitier depend-
ability,” Computer, vol. 37, no. 11, 2004.

[14] G. H. Kim and E. H. Spafford, “The design and imple-
mentation of tripwire: a file system integrity checker,” in
ACM Conference on Computer and Communications Secu-
rity, pp. 18–29, 1994.

[15] N. L. P. Jr., T. Fraser, J. Molina, and W. A. Arbaugh, “Copi-
lot - a coprocessor-based kernel runtime integrity monitor.,”
in USENIX Security Symposium, pp. 179–194, 2004.

