
Host Security

O n today’s Internet, computers are vulnerable to
a variety of exploits aimed at compromising
their intended operations. Denial-of-service
attacks can prevent a target from providing ser-

vice to legitimate clients (such as a Web server) or prevent
the targeted system itself from connecting to other com-
puters. Some DoS attacks can cause systems to temporar-
ily cease all operations. In other attacks, attackers attempt
to gain root-level access and control a system as if they
were the system administrators. Attackers can retain this
access through various tools, including rootkits. 

Rootkits are toolsets used by an attacker to retain
root-level access to a system in a covert manner. To deter-
mine whether an attacker has installed a rootkit—and the
extent to which it’s compromised the system—adminis-
trators need trusted host-based techniques. Several exist-
ing network-based techniques let system administrators
monitor their system’s status. Network-based intrusion
detection systems, for example, detect malicious activity
at various network levels. Other host-based programs
check file integrity at the system or host level. Such exist-
ing methods, however, might not detect the presence of a
kernel-level rootkit or categorize its functionality. 

Here, we present a framework to detect and classify
rootkits and discuss a methodology for determining if a
system has been infected by a kernel-level rootkit. Once
infection is established, administrators can create new sig-
natures for kernel-level rootkits to detect them. We con-
ducted our research on a Red Hat Linux-based system,
but our methodology is applicable to other Linux distri-
butions based on the standard Linux kernel. We also be-
lieve the method can apply to other Unix-based systems
and Windows-based systems. 

Rootkit
overview
Before widespread use of rootkits, system administrators
generally trusted their system utilities to provide accurate
information. The recent widespread use of rootkits
means that attackers can now easily conceal their activi-
ties.1 System administrators must therefore be constantly
aware that seemingly trusted system utilities might be re-
porting false information. 

Rootkit installation
A rootkit is like a Trojan horse in a computer operating sys-
tem (OS), except that the attacker installs the rootkit. To
install a rootkit, attackers must first have root-level access
on a computer system. Once they have this access, they can
install a Trojan-like program that masquerades as a new or
existing system program. We use the term “program” to
mean a sequence of instructions, and thus consider code in
the kernel a program. This rootkit lets them subsequently
reenter a system with root-level permissions.2

According to Harold Thimbleby and his colleagues,
there are four categories of Trojans3:

• direct masquerades pretend to be normal programs; 
• simple masquerades masquerade not as existing programs,

but as new programs that appear to be different than
they are; 

• slip masquerades are programs with names approximat-
ing existing names; and

• environmental masquerades are OS programs that the user
can’t easily identify. 

Here, we’re primarily interested in direct masquerades
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and environmental masquerades. Although we address
rootkits targeted at Linux or Linux-type OS kernels, our
techniques apply to all rootkit types.

Kernel-level rootkits
Kernel-level rootkits are one of the most recent develop-
ments in the attacker community’s arsenal.4 The kernel
is generally considered the core; that is, the lowest level
of most modern OSs. The kernel provides the file sys-
tem, CPU scheduling, memory management, and sys-
tem-call-related OS functions.5 Programs operating at
user-level interface to the kernel through a system call.
When an application performs a sys_call, it passes
control to the kernel, which then performs the re-
quested work and returns output to the requesting appli-
cation. Therefore, system calls are one of the primary
targets for kernel-level rootkit developers, but many of
the kernel’s data structures and code sections can be tar-
geted. The sys_call addresses are maintained in the
kernel memory’s system call table data structure. Unlike
a traditional user-level rootkit, which modifies critical
system-level programs on disk, a kernel-level rootkit can
replace or modify the system call table and other data
structures within the kernel itself. This allows the at-
tacker to covertly control the system. We focus on ker-
nel-level rootkits that modify the system call table,
although other kernel targets can be modified as well,
including the virtual file system data structures.

There are three types of kernel-level rootkits that
change system calls: those that modify the system call
table, those that modify system call table targets, and
those that redirect the system call table.

Table modification. With table modification, the at-
tacker modifies selected sys_call addresses stored in
the system call table. The kernel-level rootkit penetrates
kernel memory using one of two features: a loadable ker-
nel module (LKM), which can be built for Linux and
some Unix-based OSs;6 or system calls that read and
write on the kmem device file. 

Attackers can develop LKMs that create malicious
sys_calls to hide files and processes, as well as to pro-
vide backdoors for return visits to the system. These
LKM’s also modify the sys_call address table by re-
placing legitimate sys_call addresses with the mali-
cious ones.7

With a kernel-level rootkit, attackers can redirect a
sys_call away from the legitimate sys_call to the
kernel-level rootkit’s replacement sys_call. An exam-
ple table-modification rootkit is Creed’s knark rootkit,
introduced in 2001. Figure 1 shows how the rootkit redi-
rects sys_calls. 

Table target. With the table target kernel-level rootkit,
the attacker overwrites the legitimate sys_call targets
in the system call table with malicious code. The system
call table does not need to be changed. Kernel-level
rootkits can overwrite the first few instructions of the
sys_call with a jmp instruction that redirects execu-
tion to the malicious code. We can detect this target-
overwrite approach by comparing the current opcode
bytes for each sys_call with their expected value,
which must be previously stored offline. 

Table redirect. In this type of kernel-level rootkit, the
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Figure 1. System call table modification. (a) Normal system operation. (b) Following installation, the knark rootkit redirects
sys_calls.
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attacker redirects references to the entire system call table
to a new system call table in a new kernel memory loca-
tion. This new call table might contain the addresses of
malicious sys_call functions, as well as original ad-
dresses for any unmodified sys_call functions. 

One way attackers accomplish this redirection on a
Linux system is by writing to /dev/kmem. The
/dev/kmem device provides access to the running ker-
nel’s memory region in Linux kernels up to version
2.6.13. If attackers can find the proper memory location,
they can overwrite portions of the kernel memory at
runtime. Kernel-level rootkits redirect the system call
table by overwriting the pointer to the original system
call table with the address of a new system call table the
attacker creates within the kernel memory.6 Unlike the
table modification method, this approach doesn’t mod-
ify the original system call table. It can therefore pass
many currently used consistency checks.

A rootkit classification framework
To develop a framework for classifying rootkits, we bor-
row some ideas from an existing framework for modeling
Trojans and computer virus infections.3 Our work’s focus
is more specific, however, in that our goal is to develop a
method to classify rootkits masquerading as existing pro-
grams—either as new rootkits or as modifications of ex-
isting rootkits. 

Fred Cohen defines a computer virus as a computer
program that can replicate all or part of itself and attach
this replication to another program.8 The types of rootk-
its we target don’t typically have this capability. An ideal
rootkit program that aims to replace an existing program
on the target system must appear to have the original pro-
gram’s functionality, while also having some additional
malicious functionality. This added functionality can
allow backdoor root-level access; it might also enable the
program to hide specified files, processes, and network
connections on the target system. 

We use a rootkit’s added functionality and associated
elements to detect and classify rootkits. Various methods
exist to compare the original and rootkit programs and
identify the difference—or delta (�)—in functionality
between them. This � can serve as a potential signature
for identifying the rootkit in the case of nonpolymor-
phic rootkits.

Although evaluating a program file by its cyclical re-
dundancy check (CRC) checksum is faster and requires
less memory than comparing file contents,9 this com-
parison tells us only that a current program file differs
from its original program file. Using this check to detect
rootkits won’t tell us if the rootkit is a new rootkit or a
modification of an existing rootkit. Our work builds on
research to detect Trojan horse programs by comparing
them to the original program that they’re intended to
replace.9

Framework overview
Our framework assumes that we have two programs:

• p1, the original program, and
• p2, a malicious version of program p1 that provides

rootkit capabilities on the target system. 

Because they’ll produce similar results for most inputs, we
assume that an ideal rootkit and the program it intends to
replace are indistinguishable in execution. Therefore,
while not equal,3 the two programs are similar enough to
make it difficult to tell them apart by simply supplying
different inputs to the programs. 

Our framework uses three quantifiers (as defined in
Thimbleby3) and one additional quantifier:

• similarity (~): a poly log computable relation on all possi-
ble computer representations (R), including the ma-
chine’s full state (memory, screens, registers, inputs, and
so on). A single representation of R is r. Poly log computable
is a function that can be computed in less than linear time
(and we can therefore evaluate a representation without
examining the entire computer representation).

• indistinguishable (�): two programs that produce simi-
lar results for most inputs.

• a program’s meaning ([[�]]): what a program does when
it’s run.

• functionality ({((�))}): set of possible functionalities for
a program.

If p2 is part of an ideal rootkit, then p1 and p2 are indis-
tinguishable and will produce similar outputs for most in-
puts. We can therefore state that p1 is indistinguishable
from p2 if and only if

for most r � R : [[p1]]r ~ [[p2]]r � p1 � p2.
3

This means that, for most machine representations out of
all possible representations, the results of program p1 are
similar to the results of program p2, which implies that p1

is indistinguishable from p2.
3 Therefore, by comparing

only program behavior for a set of random inputs, it is dif-
ficult to determine that p2 is malicious.

Categorizing rootkits
We apply set theory to categorize rootkits as follows. If
p2 is an ideal rootkit of p1, then most elements of {((p1))}
exist in {((p2))}. We can approximate that {((p1))} is a
subset of {((p2))}, because most {((p1))} elements exist in
{((p2))}, but {((p1))} is not equal to {((p2))}. We write
this as:

{((p1))} � {((p2))} and {((p1))} � {((p2))}, meaning
{((p2))} has at least one element that does not belong
to {((p1))}.
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We identify the difference—or �—between p1 and p2

as follows:

{((p2))} \ {((p1))} = {((p�))}

is the difference between p2 and p1, containing only those
elements belonging to {((p2))} that are not in {((p1))}. 

Next, assume we’ve identified p3, another rootkit of
p1. We can identify this collection of programs as a type p2

rootkit as follows. If {((p3))} – ({((p�))} 	 {((p3))}) =
{((p1))}, then p3 has the same elements as program p2 and
is the same rootkit. If the preceding statement is not true,
but some elements of {((p�))} are contained in {((p3))}
(there exist some x �{((p�))} such that x � {((p3))}), then
we can assume that p3 might be a modification of p2. If
there are no elements of {((p�))} in {((p3))} (for all x �
{((p�))}, x 
 {((p3))}), then we can assume that p3 is an en-
tirely new rootkit. 

Although we present only a few examples here, we’ve
examined numerous rootkits using our methodology.
(The “Known rootkits” sidebar offers a list of currently
known rootkits.)

Rootkits that modify 
the system call table
Several tools exist that can detect kernel-level rootkits on
Linux based systems. One such tool is kern_check
(http://la-samhna.de/library/kern_check.c). The kern
_check program detects whether a kernel-level rootkit
exists on a system, but it fails to indicate the rootkit’s type.
Our methodology helps categorize specific classes of ker-
nel-level rootkits and can be applied to rootkits at other
levels as well.

Our method categorizes a rootkit using an archived
copy of all system call instructions from kernel memory.
To accomplish this, we developed ktext, a C program that
copies system call code, referenced by a start and end ad-
dress, and then writes the executable object code to a file
for future reference (see Figure 2). This lets analysts re-
trieve code that is currently running in the system kernel.
Further, some types of kernel-level rootkits, such as
knark, don’t remain resident in memory after the system
is rebooted. With our program, analysts can copy suspi-
cious system calls offline for follow-on analysis prior to
rebooting the system. A more robust approach for exam-
ining the kernel code requires a more secure trusted
computing base, such as a virtual machine monitor.

Application results
To test ktext, we installed several kernel-level rootkits on
several target systems and then ran the kern_check pro-
gram, which compares the current system call table’s
sys_call addresses with the original kernel symbol
map. The symbol map is created at kernel compile time
and is stored in a file call System.map. This file can be

stored offline. Any difference between the two tables in-
dicates a system call table modification (see “The kern
_check utility” sidebar). 

With the knark kernel-level rootkit, the kern_check
program identified eight redirected system calls and their
addresses within kernel space (sidebar Figure A). We used
ktext to copy the redirected system calls. Our analysis of
the source code used to create the rootkit indicated that
the redirected system calls were being written sequentially
into kernel memory. (This might not always be the case; at
times, it might be necessary to analyze the object code to
identify individual system calls’ start and end addresses.) 

Next, we rebooted the system and again ran kern
_check, which indicated that no system calls were being
redirected. To test repeatability, we reinstalled the knark
kernel-level rootkit via its loadable kernel module, and the
kern_check program subsequently validated that the knark
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Known rootkits

The Chkrootkit tool (www.chk-

rootkit.org) checks for signs of

a rootkit installation and can detect

many user-level and kernel-level

rootkits. The tool’s website includes

the following list of rootkits,

worms, and viruses that it can

detect, beginning with the first

detected.

1. lrk3, lrk4, lrk5, lrk6 (and variants)

2. Solaris rootkit

3. FreeBSD rootkit

4. t0rn (and variants)

5. Ambient’s Rootkit (ARK)

6. Ramen Worm

7. rh[67]-shaper

8. RSHA

9. Romanian rootkit

10. RK17

11. Lion Worm

12. Adore Worm 

13. LPD Worm

14. kenny-rk

15. Adore LKM

16. ShitC Worm

17. Omega Worm

18. Wormkit Worm 

19. Maniac-RK

20. dsc-rootkit

21. Ducoci rootkit

22. x.c Worm

23. RST.b trojan

24. duarawkz

25. knark LKM

26. Monkit

27. Hidrootkit

28. Bobkit

29. Pizdakit

30. t0rn v8.0

31. Showtee

32. Optickit

33. T.R.K

34. MithRa’s Rootkit

35. George

36. SucKIT

37. Scalper

38. Slapper A, B, C and D

39. OpenBSD rk v1

40. Illogic rootkit

41. SK rootkit

42. sebek LKM

43. Romanian rootkit

44. LOC rootkit

45. shv4 rootkit

46. Aquatica rootkit

47. ZK rootkit

48. 55808.A Worm

49. TC2 Worm

50. Volc rootkit

51. Gold2 rootkit; 

52. Anonoying rootkit

53. Shkit rootkit

54. AjaKit rootkit

55. zaRwT rootkit

56. Madalin rootkit
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program had again compromised the system. Kern_check
indicated that the new knark system calls were located at
different addresses within the kernel memory as expected. 

The new instances of the eight modified system calls
were the same size as those from the previous knark in-
stallation. Using these new addresses, we made a copy of
the system calls to compare against our previously
archived version of compromised system calls. A com-
parison indicated that the extracted files were identical.
This check was only a proof of concept test to determine
if we could extract the system call code from kernel
memory for comparison. We’ve achieved similar results
for other rootkits that we’ve analyzed.

To get a quick overview of the archived files, we use
the binary visual (bvi) editor tool (http://bvi.source
forge.net). As Figure 3 shows, bvi outputs:

• the addresses of the data relative to the file’s beginning
(far left), 

•
the actual data in hexadecimal notation (center), and

• the data in ASCII format (far right).

We can search within the file hexadecimal notation for
each system call’s start and end by looking for the individ-
ual opcodes for pushing and popping the registers (each
system call is a separate C code routine that pushes and
pops values onto the stack). We can also identify each sys-
tem call routine’s end by locating the one-byte return op-
code (ret – C3 in the Intel x86 architecture). These
search methods are not robust enough for all types of at-
tacks, but can give a quick overview in many cases. Given
the complex nature of x86 opcodes, we suggest using a
modified objdump or more advanced disassemblers for
complete and accurate analysis.

Figure 3 shows the bvi output for the knark_get-
dents system call, which replaced the original
sys_getdents system call. The kernel uses this system
call to output a directory’s contents. By compromising
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#include <stdio.h>

#include <sys/mman.h>

#include <syscall.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

extern int errno;

int main(int argc, char **argv) 

{

char * filename;

char * file;

/* usage first argument: output filename, 

* second argument: start address, third 

* argument: end address

* of data to copy from /dev/kmem 

*/

char * ktext;

int fp, fp_out;

long int s_text, e_text;

ulong size;

int error = 0;

file = argv[1];

s_text = strtoul(argv[2], NULL, 0);

e_text = strtoul(argv[3], NULL, 0);

size = e_text - s_text;

printf(“s_text: %x e_text: %x size:  

%x\n”, s_text, e_text, size);

fp = open(“/dev/kmem”, O_RDWR, 0);

printf(“fp - open /dev/kmem: %d\n”,fp);

ktext = malloc(size);

printf(“ktext - malloc: %d\n”, ktext);

error = lseek(fp, s_text, SEEK_SET);

printf(“error.1 - lseek: %d\n”, error);

perror(“lseek”);

error = read(fp, ktext, size);

printf(“error1 -fread ktext : %d\n”, error);

fp_out = creat(file, O_RDWR);

printf(“fp_out - fopen output: %d\n”, fp_out);

error = write(fp_out, ktext, size);

printf(“error - fwrite ktext: %d\n”, error);

free(ktext);

close(fp_out);

close(fp);

}

Figure 2. The ktext program. Ktext copies the system call code, then writes the executable object code to a file for future
reference.
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this system call, kernel-level rootkits can hide files and di-
rectories on the target system.

Applying the method 
without LKM objects
Our analysis is greatly simplified if the LKM object used
to install the kernel-level rootkit is still available on the
target system. This LKM object can still exist as an object
file (.ko or .o extension). If this file is available, we can dis-
assemble it using a program such as the GNU Debugger
(gdb) or objdump, which are available with most Linux
and Unix distributions. The gdb tool can disassemble
each system call using the disass <sys_call name>
command, which shows the instruction sequence for the
functions that map to the bvi program output.

For example, in the bvi screen, there are 256 bytes of
output displayed as hexadecimal opcode. Bytes 251-253
are 83 C4 08, which is the opcode for an add instruction.
This matches the last instruction displayed in Figure 4 be-
fore the return, which is the gdb program’s output. The
third to last symbol displayed by the bvi output (byte 254)
is the C3 opcode, which is the return (ret) command.
Each system call should have this command at the end of
its executable path. Even if the LKM opcode is unavail-
able, we can find each system call’s end by locating the
final C3 opcode. A system call can contain more than one

return statement. If the rootkit’s LKM object file is avail-
able, it’s possible to do a side-by-side comparison of the
bvi and gdb output to analyze the system call. In any case,
each nonpolymorphic rootkit should have a consistent
implementation of its replacement system calls, which
can be used to classify that particular rootkit. Our re-
search thus far validates this. 
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The kern_check utility

Samhain Labs has developed kern_check,1 a small command-line

utility that detects kernel-level rootkit presence by comparing a

system call table’s current sys_call addresses with the original

kernel symbols map generated when the Linux kernel is compiled.

Any difference between the two tables indicates a system call table

modification. However, recompiling the kernel with different

options or recompiling a new kernel version will most likely result in

a new kernel symbols map. It is important to ensure that the

System.map file used by kern_check is accurate and up to date. 

Figure A shows the output of the kern_check program running

on a system infected with the knark kernel-level rootkit. As the

output indicates, the addresses of eight system calls in the system’s

current call table stored in kernel memory (/dev/kmem) don’t

match the calls’ addresses in the original kernel symbols map

(available in /boot/System.map in Red Hat Linux-based

systems). As the figure shows, the system call table has most likely

been modified by a kernel-level rootkit. 

When we began our research, the kern_check program

couldn’t detect kernel-level rootkits that redirected the system

call table. The reason was that kern_check used the query

_module command to retrieve the kernel’s system call table

address, but Linux 2.6 Kernel doesn’t export the system call table

address. We therefore modified kern_check (which is released

under the GPL license) to work even if the query_module

capability is disabled so it could detect kernel-level rootkits that

redirect the system call table. (We sent Samhain Labs our

proposed modifications to kern_check and the company subse-

quently released a new version that can detect kernel-level

rootkits that redirect the system call table. The new

kern_check program incorporates many of the methods we

identified through our rootkit examination method.)

Reference

1. Samhain Labs, Detecting Kernel Rootkits, July 2003, http://la-

samha.de/library/rootkits/detect.html.

Figure A. Output of the kern_check program running on
a knark-infected system.

Figure 3. A binary visual editor analysis of getdents system call,
which outputs directory contents. In this case, the original
sys_getdents system call was replaced by the knark_getdents
system call.
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Rootkits that redirect
the system call table
To show how our method detects kernel-level rootkits
that redirect the system call table, we’ll use an example of
its application against the SucKIT kernel-level rootkit.

Some techniques, including Samhain’s kern_check
program, check the system call table in kernel memory
against the /boot/System.map file to detect kernel-
level rootkits. However, the original kern_check program
failed to detect rootkits of the SucKIT variety as well as
any type of rootkits on more recent Linux kernel versions. 

In examining the SucKIT rootkit, we found the first
� in functionality between SucKIT and the program it
replaced: SucKIT overwrote a kernel memory location
containing the system call table’s address. It accomplished
this by querying a specific register within the processor
and used the resulting information to find the system call
table’s reference address within the kernel. SucKIT then
overwrote this address with that of a new system call table
containing its own malicious system call addresses.

So, our � consists of a redirected system call table ad-
dress, a new system call table, and some new malicious sys-
tem calls. Given this, we can use SucKIT’s own method to
query the processor to retrieve the system call table’s ad-
dress and then see whether a rootkit has changed this ad-
dress. The original address—stored in the System.map
file in earlier kernels—is available when the kernel is first
compiled. If the addresses differ, we can make a more de-
tailed check of the kernel memory’s current system call
table. In doing so, we create a � between the system call
addresses in the kernel memory’s system call table and the
system calls addresses in the System.map file. 

If the System.map file is current, then differences
between it and the kernel memory’s system call table can

indicate that system call redirection is occurring and that
a rootkit has infected the system. We can establish a pre-
liminary signature based on the number of system calls
that are being redirected. If kernel-level rootkits change a
different number of system calls, we can assume we have
at least two different kernel-level rootkits. If two rootkits
change the same system calls, we can conduct a more de-
tailed analysis of each infected system to see if they are in
fact unique.

If we don’t have the rootkit source code, we can still
look for differences using the kernel debugger (kdb) pro-
gram or using /dev/kmem to copy segments of kernel
memory and examine the data offline. With kdb, we can
examine the malicious calls’ actual machine code because
we’ll have their start addresses within kernel memory. We
can also try to disassemble these malicious system calls, ei-
ther manually or through the kdb program that can be in-
stalled on a forensics system. 

In any case, we can now detect system call table redi-
rection on the target system. Although an attacker could
develop a kernel-level rootkit that provides false infor-
mation about the system call table’s entry point, we’re
unaware of any current kernel-level rootkit that can do
this. Again, in this case, a more robust trusted computing
base is needed.

Application results 
As we describe in the sidebar “The kern_check utility,”
we modified kern_check to better detect kernel-level
rootkits. Figure 5 shows the results of running this modi-
fied kern_check program on a system infected with the
SucKIT rootkit.

Our results are exactly what we’d expect given our
analysis of the SucKIT source code. SucKIT created 25
new malicious system calls that subverted the original
system calls. SucKIT also redirected the system call table
reference to a new system call table, which it created in
kernel memory (the modified kern_check program out-
put’s first line is this new system call table’s address: kaddr
= 0xcc1e8000). This address differs from the system call
table’s address stored in the System.map file, which is
the address of the original system call table on the target
system. We retrieved this address using the grep com-
mand to search the System.map file (Figure 5, last two
lines). Typically, this file should be stored offline. If we
run the modified kern_check program against this ad-
dress, we’d detect no system call redirection. However,
because we run the modified kern_check with the ad-
dress retrieved when we query the processor, we can de-
tect system call redirections.

Applying the method 
without source code 
Even without the SucKIT source code, we can still use
this methodology to detect a kernel-level rootkit target-

30 IEEE SECURITY & PRIVACY      ■ JULY/AUGUST 2005

Figure 4. The gdb output of getdents system call. The 256 bytes of
output are displayed in disassembled form; bytes 251-253 are 83 C4
08 (fifth row from bottom of terminal),which is disassembled as an
add instruction. The last ret instruction, C3 (fourth row from bot-
tom), indicates the end of the disassembled function. An instruction-
by-instruction analysis can show what the function does. 
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ing system calls. If the address retrieved from the modi-
fied kern_check program matches the address from the
System.map file, but specific system call addresses dif-
fer, then we know that a kernel-level rootkit that modi-
fies the system call table is likely installed on the system. If
the address retrieved by the modified kern_check pro-
gram does not match the System.map address, then a
kernel-level rootkit that redirects the system call table is
likely installed on the target system. 

The System.mapfile is created when a Linux kernel
is compiled. It should remain consistent for all installa-
tions of that kernel. If this file is unavailable, the system
will still work, but debugging will be difficult. It should
be possible to retrieve a copy of the System.map file for
a standard Linux installation on a particular architecture.
For custom installations (such as those with kernel
patches), analysts can copy the System.mapon any crit-
ical system when it’s first compiled for future reference.
It’s important to note that attackers can easily modify the
System.map file if it exists on the system (at /boot/Sys-
tem.map, for example) so analysts should always use a
known good copy.

Other kernel-level rootkits
Although we’ve focused this work on kernel-level rootk-
its that target the system call table, there are many other
targets in the Linux kernel that attackers might find of in-
terest. For example, as we describe below, the adore-ng
rootkit targets the virtual file system data structures. More
advanced rootkits can target core kernel data structures
such as the page tables. 

Targeting the virtual file system
Released in January 2004, the adore-ng kernel-level
rootkit targets the virtual file system rather than the sys-
tem call table. In targeting the VFS, adore-ng can com-
promise the kernel and hide the attacker’s presence. The
VFS is a software layer in the Linux kernel that handles
all system calls related to the standard Unix file system.
VFS can handle several different types of file systems.10

The adore-ng kernel-level rootkit replaces existing han-
dler routines—which provide directory listings to the
/proc and /file systems—with its own routines. This
lets the attacker hide specified files and processes from
user mode programs.6

Adore-ng redirects reference to the proc_root
_lookup function call to a malicious lookup function
call that it creates. This redirection occurs outside of the
kernel code’s static text section in the kernel’s dynamic
data section. We examined the source code of adore-ng
to determine how the system was compromised. This
showed us where the proc_root_lookup redirection
was occurring in kernel space and also gave us the address
of the malicious replacement lookup function for follow-
on analysis. Given a copy of a kernel-level rootkit, we can

analyze its infection vector to categorize it and aid in its
subsequent detection. 

Anticipating new kernel-level targets
Currently, kernel-level rootkits target the system call
table, virtual file system structures, page tables, and a
handful of other structures. More generally, anything in
the kernel can be a target. Our methodology can be ap-
plied to the entire kernel, but it is important to emphasize
that a more robust access to kernel memory is needed for
inspection tools. Future kernel-level rootkits might tar-
get subsystems such as the scheduler, network stack,
hardware drivers, and so on. Administrators can create a
copy and cryptographic checksums of these subsystems
to ensure the integrity of their kernels remains intact.

Other rootkit types
In addition to Linux kernel-level rootkits, there are many
other types of rootkits and combinations of techniques.
Some of the early rootkits developed were Unix user-
level rootkits. These days, many worms, viruses, and bots
are beginning to include rootkits in their payloads to hide
themselves.

“Blended” rootkits
We applied our methodology against a new type of
rootkit retrieved from a compromised Linux system. The
new rootkit, named the zk rootkit, is a modification of
SucKIT. Our analysis revealed it to be a “blended”
rootkit containing elements of both user-level and ker-
nel-level rootkits. 

Applying our method let us identify specific � charac-
teristics that analysts can use to detect and categorize this
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Figure 5. Modified kern_check results on a SucKIT-infected system.
The system call table has been redirected, as a comparison of the
kaddr value and the grep D sys_call_table output indicate. In
all, 25 system calls were redirected.
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rootkit. Our method also let us identify the uninstall pass-
word for the zk rootkit. The usage statement indicated
that a password was required to uninstall the zk rootkit.
The rootkit documentation, however, contained no ref-
erence to this uninstall password, nor was there any indi-
cation of how to set the password. We used the zk usage
statement to try and identify a �.

First, we conducted a grep search for the term “pass-
word” within the zk rootkit’s source code directory. The
results indicated that the term “password” appeared in
the zk rootkit’s client.c source code file. The SucKIT
rootkit had a file with the same name. Comparing the
files using the resident diff command indicated that the
two files in fact differed. Then, as Figure 6 shows, we ran
a more complete search on the zk client.c file and
identifed a password (“kill me”). 

Given this, we successfully uninstalled the zk rootkit
using the command #./zk u kill me. Finally, we ran
the modified kern_check program on the system, which
indicated that the system was no longer infected.11

Microsoft rootkits
Although our research has been primarily focused on
Linux-based systems, our methodology produced infor-
mation that let us detect and classify rootkits on other sys-
tems as well. For example, we analyzed a compromised
Microsoft 2000 honeypot to locate a specific � to identify
a possible rootkit on the system. The � characteristics we
found were three new directories; we also identified reg-
istry changes. Given this �, we were able to categorize
the Microsoft rootkit.11 The rootkit can be classified as a
user-level rootkit because the new directories created
were hidden without modifying the kernel.

A pplying our methodology generates rootkit signa-
tures that can help both system administrators and the

security community at large locate known kernel-level

rootkits and react faster to new types of attacks. We believe
that understanding the extent of a rootkit installation can
lead to a sound method of uninstalling rootkits. One of
the biggest challenges is establishing a better trusted com-
puting base that is more resistant to rootkit attacks. 
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