
d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) 2 8e3 7
ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in
Locating 386 paging structures in memory images
Karla Saur*, Julian B. Grizzard

The Johns Hopkins University, Applied Physics Laboratory, 11100 Johns Hopkins Rd, Laurel, MD 20723-6099, USA
a r t i c l e i n f o

Article history:

Received 16 November 2009

Received in revised form

26 March 2010

Accepted 13 August 2010

Keywords:

Digital memory forensics

�86

Process identification

Linux

Microsoft Windows

Paging

Virtualization
* Corresponding author.
E-mail addresses: ksaur@umd.edu (K. Sau

1742-2876/$ e see front matter ª 2010 Elsev
doi:10.1016/j.diin.2010.08.002
a b s t r a c t

Digital memory forensics consists of analyzing various components of a memory image

from a compromised host. A memory image consists of data and processes that were

running on the system at the time the image was created. Previously running processes are

one of the key items in memory images to identify, including potentially hidden processes.

Each process has its own paging structures that define its address space, so locating the

paging structures can potentially lead to finding all of the processes that were running. In

this paper, we describe an algorithm to locate paging structures in a memory image of an

�86 platform running either Linux or Windows XP. The algorithm can be used to find

paging structures for potential processes that were hidden by rootkits or other malware.

Furthermore, if the system was running an �86 virtual machine, the algorithm can locate

paging structures associated with both the host kernel and the guest kernel processes. Our

algorithm relies more on the constructs of the �86 hardware and less on the operating

system running on top of the hardware. This means that the algorithm works for many

different operating systems with only minor tweaking.

ª 2010 Elsevier Ltd. All rights reserved.
1. Introduction finding paging structures that can lead to identifying
Volatile memory in a compromised system may contain

critical evidence relevant to an attack that will be lost if the

machine is powered off. To prevent this loss, an analyst can

take a snapshot of the memory before shutting the system

down. This snapshot will likely include both benign user data

as well as malicious attacker data. For example, the attacker

may have left a process running that contains details of how

the attacker broke in and what he or she did after obtaining

access. One important problem to solve in digital memory

forensics is how to locate all of the processes that were

running at the time the snapshot was taken, including

malicious processes. With paging enabled, each of these

processes must run in an address space described by a set of

paging structures. Therefore, as amethod to help locate all of

the processes in a memory image, this paper focuses on
r), julian.grizzard@jhuap
ier Ltd. All rights reserve
processes.

To locate paging structures in amemory image, the analyst

must understand how to interpret the raw bytes in the image.

The semantics of a compromised memory image depends on

the layers in the previously running system (hardware, oper-

ating system, and applications) and the malicious code

injected into the system. One approach to locate paging

structures is to use the details of the operating system kernel

implementation. For example, because the kernel maintains

all of the paging structures, a program could inspect the kernel

data structures to locate all of the paging structures. This

could also be used to enumerate the processes, which is what

we are eventually interested in discovering. However, since

thememory image is from a compromised host, there is a risk

that even the kernel and its data structures have been

compromised. Therefore, a more robust approach for locating
l.edu (J.B. Grizzard).
d.

mailto:ksaur@umd.edu
mailto:julian.grizzard@jhuapl.edu
http://www.sciencedirect.com
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) 2 8e3 7 29
paging structures is to use specific details of the softwar-

eehardware interaction that even malicious code must

maintain.

This paper describes an algorithm that uses the latter

approach. We describe an algorithm for finding paging struc-

tures in a memory image by searching for data structures that

are used by the hardware to support the processes. Specifi-

cally, we focus on the paging structures in the �86 architec-

ture. However, we do use some of the characteristics of the

kernel implementations to optimize the search.

The �86 hardware supports a mapping from what is

known as virtual memory addresses to physical memory

addresses (addresses on the physical RAM chips) so that each

process running on the system can have its own virtual

address space. When a machine instruction references

amemory location, the hardware automatically translates the

virtual address to a physical address using the previously

configured paging structures in the physical memory. This

process is called paging and must be enabled by the operating

system. An important assumption to point out is that we

assume that all code running on the system was setup to use

paging, which is true in the majority of common operating

systems. This limitation is discussed in Section 9.

Each process must have its own set of paging structures

and those structures define the physical memory that is

used by that process, enabling our algorithm to potentially

locate all of the processes that were running on the system

by finding all of the paging structures. In fact, the algorithm

can potentially help identify some previously running

processes if the operating system did not clean up the

paging structures. In our experiments, our algorithm is able

to find the paging structures associated with all running

processes on both Linux platforms and Windows XP

platforms.

In this paper, we first provide background information on

�86 paging. Next, we describe our algorithm for process

identification in memory images of a Linux system and then

explain how our algorithm can be generalized to different

operating systems. We show the results of verifying our

algorithm with clean memory images and then show the

results of applying our algorithm to find potential rogue

processes and to separate a virtual machine’s paging struc-

tures from a host’s paging structures. Finally, we discuss

important limitations, related work, future work, and end by

highlighting conclusions from our results.
Fig. 1 e 386 linear to physical address translation.
2. Background on 386 paging

On �86 computers, the most common method of managing

processes is to use the paging mechanism provided by the

hardware. The paging mechanism provides a mapping from

the virtual address space to the physical address space. For

example, the operating system could set up a process so that

a virtual address of 0xC0000000 maps to a physical address of

0x0003A000. Paging enables a number of benefits for processes

to include: separate address spaces, shared mappings of

memory, isolation, a virtual view of memory, swapping to

disk, and so on. Commodity �86 operating systems almost

always enable paging for process management.
There are different types of paging structures that are

legitimate depending onwhether the�86 system uses normal

32-bit paging or Physical Address Extension (PAE) paging (Intel

Corporation, 2007). These structures are as follows:

� Page Directory Pointer Table (PAE only) e a 32-byte structure

containing up to 4 pointers to page directories

� Page Directory e a 4 KB structure containing up to 1024

entries pointing to either a page table or a physical page

(2 MB physical page if PAE or 4 MB physical page if non-PAE)

� Page Table e a 4 KB structure containing up to 1024 pointers

to 4 KB physical pages

� 4 KB page, 2 MB page (PAE only), or 4 MB page (non-PAE only) e

translated physical page

� CR3 Register e stores the base physical address of the page

directory pointer table (PAE only) or the page directory (non-

PAE only) for the current process.

In 32-bit paging, the mapping is defined by the CR3 register

value, a page directory, and the corresponding page tables

which then point to physical pages of the process’ data as seen

in Fig. 1. For paging that uses 4 KB pages, a virtual address is

divided into three ranges: high bits, mid bits, and low bits. The

high bits provide an index into the page directory. Themid bits

providean index into thecorrespondingpage table,and the low

bits provide an offset into the corresponding page. For 4 KB

pages, thepagedirectories, page tables, andpagesareall 4KB in

size and must be aligned on 4 KB boundaries. The physical

address of the current page directory provides the root of

amapping and is stored in the CR3 register during execution of

a process. The physical addresses of the page tables are stored

in the page directory, and the physical addresses of the pages

are stored in the page tables. For 4 MB pages, there are no page

tables, so instead, thepagedirectoriespoint to4MBpages. Each

process has its own CR3, which enables each process to have

a different virtual to physical memory mapping.

Physical Address Extension (PAE) modemaps 32-bit virtual

addresses to 36-bit physical addresses, enabling up to 236 bits

(64 GB) of RAM. PAE requires an additional layer of abstraction

called the page directory pointer table. The address of the page

directory pointer table is stored in the CR3 register during

execution. The page directory pointer table has 4 entries

which point to the process’ 4 page directories. Each page

directory pointer table is 32 bytes in length (4 � 8-byte entries)

and must be 32-byte aligned within physical memory. PAE

uses 2 MB large pages instead of 4 MB page pages.

From a forensics perspective, it is interesting to find the

paging structures in a memory image because each set of

paging structures will correspond to a process that was either

currently running or previously running for a given memory

image. In 32-bit systems without PAE-mode enabled, the

http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) 2 8e3 730
important structures to locate are the page directories and

page tables. In 32-bit systems with PAE-mode enabled, the

important structures are the page directory pointer tables, the

page directories, and the page tables. Although we focus on

32-bit systems in this work, our algorithm generalizes to other

architectures including 64-bit �86, virtual page tables

provided by recent �86 hardware virtualization support, and

even non-�86 platforms.
3. Related work

Linux memory analysis was part of the focus of the Digital

Forensics Research Workshop (DFRWS, 2008) Forensics Chal-

lenge in 2008, in which participants analyzed a Linuxmemory

image among other pieces of evidence from a Linux system.

Two of the challenge submissions made use of the tool PyFlag

to automate the analysis of the provided Linuxmemory dump.

Presented at an earlier DFRWS Conference was FATKit,

aversatilememory forensics toolkit that included thecapability

to parse out Linux process lists using Linux kernel structures

(Petroni et al., 2006). At Black Hat, Burdach (2006) presented

aLinuxmemoryanalysis toolusingLinux internal structures. In

our Linux process list construction, we focus on the hardware

structures rather than the Linux kernel structures.

Kornblum (2007) makes use of page directory entry flags,

applying Windows XP’s utilization of the “available bits”

10e11 to search additional pages that are flagged as “invalid”,

gaining additional information about these otherwise over-

looked pages in memory. Like this paper, we focus on paging-

related flags; however we utilize only the flags as they are

explained in the Intel Corporation (2007) IA-32 manual,

ignoring bits 9e11, which are left available by Intel for oper-

ating system specific use.

One of the earliest tools to scan for virtual address spaces

in memory images was a script called pmodump that was

developed as part of the Truman project (Stewart, 2010). The

pmodump script is based on the observation that page

directories on Microsoft Windows platforms contain a self-

referencing physical address pointer at a known offset in the

page. The tool is fast because it only checks the value of one

double word for each page to determine whether or not that

page is a page directory. Themain advantage of this algorithm

is speed. However, one of the main disadvantages is that the

algorithm is specific to the operating system.

Schuster (2006) creates a set of scanning rules based on the

structure of Microsoft Windows processes and threads to

locate processes and threads. The process structure infor-

mation includes a pointer to the paging structures for that

process, which can be used to map out the virtual address

space for that process. Schuster (2007b,c) later considers

searching for processes in the reverse direction by first finding

paging structures. He develops a method to find page

directories by testing to see if the upper portion of a potential

page directory matches an expected pattern. His method has

some false positives, but it is not clear what is causing the

false positives (Schuster, 2007a).

Wu (2007) focuses on finding page directories for Windows

XP SP2with PAE enabled.Wunotes that the fourth entry in the

page directory pointer table points to itself, so that the paging
structures can be mapped into the virtual address space.

Therefore, the test to determine if a given page is a page

directory pointer table is to see if the fourth entry contains the

physical address of that page.

Previous work has focused on developing patterns to find

paging structures based on observations about specific oper-

ating systems. The pmodump tool’s method andWu’s method

for locatingpaging structures are fast because they only inspect

a small amount of data per page. Although thesealgorithmsare

fast, there is less data that needs to be modified in order to

confuse their algorithm. Schuester has a more robust method

because he has developed a signature for the upper portion of

the address space, but his method is also operating system

specific. In this work, we are interested in developing amethod

to find paging structures that is less operating system depen-

dent. Instead, our method focuses on general �86 constraints

on paging structures as much as possible.
4. Linux algorithm to locate processes

Following the Intel Corporation (2007) 64 and IA-32 Architec-

ture Software Developer’s Manual, wemade predictions about

the flag values of the page directory entries belonging to the

kernel. Our plan was to use these flag values as signatures for

valid page directories, as all valid page directorieswill have the

same kernel mappings. For example, we expected the kernel

pages to be flagged at the supervisor privilege level and for the

read/writeflag tobeset toallowreading fromandwriting to the

kernel pages, andweexpected thepagebaseaddress bits of the

page directory entry to bewithin the range of physicalmemory

if thepresentflag indicated thepagewaspresent. Aftermaking

predictions for all of the register values, we then refined and

verified our predictions by inspecting the kernel mapping’s

flags in known valid page directories using a JTAG debugger

(Arium,2010) to view theactualflagvalues.We thenused these

flag values as a signature in our model of a page directory.

Our basic algorithm iterates through the entire memory

image using a simple scanner. We search the entire memory

image one page directory-sized block (4 KB) at a time, treating

eachblock as apotential pagedirectory. Thepage ofmemory is

rejected as a valid page directory if it has a characteristic that is

not consistent with our model of a valid page directory.

BecausePAEmodeuses apagedirectorypointer table,wemust

use a slightly different algorithm for PAE-enabled images.

These differences are described in Section 5.2. We will first

describe our algorithm as applied to Linux in non-PAE mode,

and then show how changing parameters can easily expand

the algorithm to other platforms. Our algorithm uses two

passes to rule out possible page directories as described below.

4.1. First pass of algorithm

First we search the potential page directory for kernel

mappings. If the physical memory size is less than 896MB, the

Linux kernel maps all of physical memory into the virtual

address space starting at 0xC0000000, the fourth gigabyte of

the kernel linear address space. Memory above 896 MB cannot

bemapped entirely into the kernel linear address space (Bovet

and Cesati, 2006), but this does not affect our algorithm.

http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) 2 8e3 7 31
In the Linux kernel, kernel mapping flags correspond to

a pattern where the least significant bits are equal to “0x1E3”.

The physical memory is mapped in as 4 MB pages with the

flags as shown in Fig. 2. We chose to focus on the hardware

flags because it is a quick and consistent way to identify the

kernelmappingswhich correspond to the location of potential

processes in physical memory. Although all page directories

in a memory image contain pointers to the same kernel and

will therefore have the same base addresses, the kernel

location and address will change for different platforms while

the flag values remain the same. The page directory entry flags

for non-PAE Linux are as follows:

� Flag 0, the “present” flag, is always 1 because the kernel will

always be mapped in and present.

� Flag 1, the “read/write” flag, is set to 1 to allow the kernel to

read and write.

� Flag 2, the “user/super” flag, is always 0 (super), because

only the kernel should have access.

� Flag 3, the “write-through” flag, is 0 to allow write-back

caching.

� Flag 4, the “cache disable” flag, is 0 to allow the page table to

be cached.

� Flag 5, the “accessed” flag, is 1 showing that the page or page

table has been accessed.

� Flag 6, the “dirty/clean” flag, is 1 showing that the page has

been written to.

� Flag 7, the “page size” flag is 1 in Linux systems, as Linux

uses large pages to map in the kernel. (Large pages are 4 MB

in non-PAE mode and 2 MB in PAE mode.) Windows XP uses

both 4 KB and large pages, but themajority of page directory

entries in Windows XP kernel space are 4 KB.

� Flag 8, the “global” flag, is 1 in all Linux systems and is

unpredictable in Windows XP systems.

All valid page directories in Linux will contain a number of

entries whose least significant bits are equal to “0x1E3”. The

number of these entries is slightly less than 1/4 times the

physical memory size in megabytes because the kernel uses

4MB pages for its mappings. The flags remain the same across

PAE enabled and non-PAE-enabled Linux systems. This has

been successfully tested on many Linux distributions across

varying memory sizes, as shown in Table 2.

Page directories can hold up to 1024 (0e1023) entries. For

each potential page directory, we count the number of entries

that match the kernel mapping flag pattern located in the top
2122 01234567811 9121331

Fig. 2 e Page directory entry values for a 4 MB Page (Linux

kernel mapping).
1/4 of the page directory (page directory entries 768e1023),

which correspond to the kernel’s virtual address space. We

then compare the counted number to the threshold of

expected entries, which we set to slightly less than 1/4 times

the physical memory size as shown in Table 1. If there are not

enough kernel mappings as determined by flag pattern count,

thenwe disregard the potential page directory andmove on to

the next 4 KB block of memory.

In this initial pass, we also count the number of populated

entries in the page directory. If a non-PAE potential page

directoryhasnoentries (and is thereforeentirely blank), or 1024

entries (and is therefore entirely garbage, because valid page

directories contain some blank entries), we discard this poten-

tial page directory. This allows us to quickly rule out potential

page directory memory segments without further processing.

4.2. Second pass of algorithm

Once the kernel mappings have been detected, we further

inspect thepotential pagedirectoryby looking at theuserspace

(0e767) entries. If the “present” bit of an entry (bit 0 in Fig. 2) is

set to 0,we continue to the next entry and ignore the rest of the

current entry, as the page it points to has been swapped out of

physical memory. If bit 0 is set to 1, indicating a present entry,

we further analyze the page directory entry, this time checking

that the page base address or the page table base address is in

a valid address range within physical memory. If the potential

pagedirectorypasses thisfinal check,wemark it asavalidpage

directory. This valid page directory represents another poten-

tial processdetected byour algorithm, and it is added to our list

of potential processes that the analyst can inspect.
5. Generalized algorithm

We have explained how paging structures can be located in

a memory image using the kernel mappings in Linux non-PAE

systems. As the introduction states, this algorithm can be

applied to any �86 system implementing paging by making

a few minor modifications. These modifications are made by

adjusting flag values and threshold count as shown in Table 1.

Future work will investigate flag values and threshold count

for other platforms such as Mac OS X, newer Windows

versions, and 64-bit operating systems. We will now show

how our algorithm can be applied to Microsoft Windows XP

and PAE-enabled Linux and Windows XP.

5.1. Algorithm applied to Microsoft Windows XP

In a Windows XP system, the algorithm is similar with an

adjustment to the “0x1E3” flag pattern. Instead of using only

large pages to map in the kernel like Linux, Windows XP uses

both 4 KB and large pages to map in the kernel (Russinovich

and Solomon, 2005). However, the majority of kernel

mapping entries are 4 KB, and for simplicity, we change the

“page size” bit (Flag 7) from 1 to 0 in our matching pattern.

Also, the “global” flag (Flag 8) varies in Windows XP.

According to the Intel Corporation (2007) manual, Flag 8 is the

“global” flag in non-PAE and 2 MB PAE entries; in 4 KB PAE

entries, there is no “global” flag, and Flag 8 is always set to 0.

http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002

Table 1 e Algorithm parameters for different operating systems.

Platform Flag values Flag threshold count Flag locationa

Linux (Non-PAE) 0x1E3 zmaxð14 � ðmem size MBÞ; 14 � 896Þ pg_dir entries 768e1023

Linux (PAE) 0x1E3 zmaxð12 � ðmem size MBÞ; 12 � 896Þ pg_dir 3

Windows (Non-PAE) 0x63 (350e500) pg_dir entries 512e1023

Windows (PAE) 0x63 (350e500) pg_dir 2 and 3

a Zero indexed (page directories entries from 0 to 1023, PAE page directories from 0 to 3).

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) 2 8e3 732
However, observations show that Windows XP PAE 4 KB page

table entries may be either 1 or 0.

Because of these variations, we ignore Flag 8, and only

invert Flag 6. From this change, the least significant bits we

search for in Windows XP systems are “0x63”. The Windows

XP default settings map in the kernel above 0x80000000, using

around 400� 4 KB page directory entries. Therefore, we search

for “0x63” flag entries in the top half of the page directory.

Because Windows XP uses a large number of 4 KB pages to

map in the kernel, the “0x63” entries in the page directory are

pointers to page tables (rather than directly pointing to 4 MB

kernel pages), therefore the number ofmappings does not vary

greatlywith the amount ofmemory becausewearenot directly

considering the pages, only thepagedirectoryentries,whichare

pointers to page tables. Note that thenumber 400 is an observed

approximate and further research is necessary to carefully

bound this number. These variations are shown in Table 1.

5.2. Algorithm applied to 36-bit PAE

In PAE mode, the CR3 value points to a page directory pointer

table,whichpoints to fourpagedirectories, addinganadditional

level of paging structure. The above parsing algorithm is similar

for PAE mode, except that we now consider each block of

memoryasapotential pagedirectorypointer tablewithpointers

to four corresponding page directories. According to the Intel

Corporation (2007) specification, these page directory pointer

tablesmust be32-byte aligned, rather thanpage-aligned like the

page directories, so we adjust our scanning increment accord-

ingly. In Windows XP, the last two page directories contain the

kernel mappings, correspondingwith 0x80000000 and higher in

the virtual address space. In Linux, the last page directory

contains the kernel mappings, corresponding with 0xC0000000

and higher. Because the Linux kernel maps into 2 MB pages in

PAE mode rather than 4 MB pages, there are around twice as

many “0x1E3” values, or around half of the memory size, as

opposed toone-quarter thememory size innon-PAE images. For
Table 2 e Example test results for clean memory images.

Distribution Kernel Vers. Size (MB)

Centos 5.1 2.6.18-53.el5 512

Fedora 7 2.6.21-1.3194.fc7 256

Ubuntu Server 6.06.2 2.6.15-51-server 128

Ubuntu Server 8.04 2.6.24-19-server 128

Ubuntu 8.04 2.6.24-19-generic 512

Windows XP SP1 N/A 512

Windows XP SP2 N/A 256

a Number of process spaces present in the kernel structures but missed

b Processes marked as expired as described in Sections 7.1 and 7.2.
example, the kernel maps in to 255 entries (“0x1E3” entries per

page directory) in a 512 MB Ubuntu Server 8.04 (PAE) memory

image, but only 127 entries in a 512 MB Ubuntu Desktop 8.04

(non-PAE) image. Table 1 explains the different parameters we

input to our algorithm allowing for the different modes. Note

that the flag threshold count is approximate.
6. Verifying algorithm with clean images

In order to determine if the paging structures we found

correlate with processes on the system, we compared our list

to process lists reported by known clean operating systems.

6.1. Linux verification

We walked the Linux kernel task structures to verify our

findings. We tested on a variety of system configurations as

shown in Table 2. In non-infected memory images, our algo-

rithm did not miss any processes listed in the task structure

lists. We also detected several additional process spaces.

Many of the unlisted process spaces we found were termi-

nated processes, which we verified using multiple image

captures over a period of time. In many cases we are able to

distinguish terminated processes from potentially malicious

processes, as will be described in Section 7.

6.2. Windows XP verification

To verify our algorithm on Windows XP images, we acquired

memory dumps of clean systems for both PAE-enabled systems

and non-PAE-enabled systems. We obtained a list of running

processes using a kernel debugger (Microsoft Corporation, 2010)

and their corresponding paging structures, and we compared

this list to our list of paging structures. Our algorithm did not

miss a single process space as shown by the debugger. Our

algorithm also detected several other process spaces with
Mode CR3s Misseda Expiredb

Non-PAE 43 0 3

Non-PAE 93 0 6

PAE 30 0 10

PAE 25 0 7

Non-PAE 88 0 12

Non-PAE 68 0 N/A

PAE 61 0 N/A

by algorithm.

http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) 2 8e3 7 33
kernel mappings similar to the verified processes, including

several copies of valid processes. The extraneousprocesses that

are not copies could possibly be due to idle or terminated

processes and more investigation of these processes is left to

future work.
7. Rogue process detection

Now that we have outlined our basic process space detection

algorithm, we show how it can be applied. Our algorithm can

be used to detect rogue processes hiding in memory by

comparing a list of expected processes to a list of potential

processes as determined by our algorithm. In many cases, we

are able to weed out terminated processes enabling us tomore

easily spot malicious “rogue” processes attempting to hide in

memory.

7.1. Rogue processes in Linux without PAE

In a current valid page directory on Linux systems without

PAE enabled, “entry 0” of the 1024 possible entries always

has all 32 bits set to “0”. When a process terminates, the

Linux kernel will free the page directory and add it to the

kernel’s linked list of free pages of memory. The pointer to

the next page of the kernel’s free page list is stored in the

first 4 bytes of each page, thereby making the old “entry 0”

non-zero. This non-zero “entry 0” allows us to quickly label

the page directory as terminated. Additionally, all other

userspace entries are cleared, but the kernel mappings are

left in tact.

Comparing our list of paging structures to the Linux

kernel’s task structure list allows us to spot unexpected

paging structures. Using the above information, we can

identify former processes that have terminated and been

removed from the task structure list by the operating system.

This allows us to easily distinguish former processes (that

were legitimately removed from the task structure list) from

potentially malicious or rogue processes (that were removed

from the task structure list by malware). When we find a page

directory, as detected by our algorithm, we expect it to be one

of the following:

� Present in the kernel’s copy of the task structure list

� Consistent with the pattern of a terminated task, having

only the kernel mappings and a pointer in entry 0

� The master kernel Page Global Directory, also know as

swapper_pg_dir (One instance permemory image found low

in physical memory) (Bovet and Cesati, 2006)

If there are other page directories found by our algorithm

that do not match one of those three groups, they are flagged

as potentially malicious. We use this algorithm to detect

rootkits, as discussed in Section 7.4.

Although our algorithm can detect terminated Linux

processes, unfortunately for forensics purposes, all userspace

entries (1e767) of the page directory and the pages they point

to are zeroed out promptly after a process expires. This leaves

the former page directory as entirely zeros with the exception

of a pointer to the next page of freememory in entry 0, and the
kernel mappings at entry 768 and higher (the top 1/4 of the

1024 page directory entries).

7.2. Rogue processes in Linux with PAE

Our algorithm for Linux PAE systems is similar to non-PAE

systems. In PAE systems, after a process has expired, the

Linux kernel zeros out all user entries in the first three page

directories pointed to by the page directory pointer table.

However, the page directory pointer table (a 32-byte structure)

is not deleted, leaving 3 pointers to former page directories

and the kernel page directory. Our algorithm therefore detects

several paging structures with zero userspace entries, which

are remnants of former processes.

In newer Linux kernel versions, (for example, the kernel

used by Ubuntu 8.04), occasionally two copies of a page

directory pointer table exist. This is a remnant of a former

process and the Linux kernel has reassigned the page

directories from the expired process to a new process. The

only remnant of the old process is the copy of the page

directory pointer table, with all of the page directory and page

pointers overwritten by the newly assigned process.

Once we rule out terminated processes, we can again

search for suspicious paging structures. To be non-suspicious

we expect the page directory pointer table to be one of the

following:

� Present in the task structure list

� Consistent with the pattern of a terminated task as

described above

� Be a copy of a legitimate process: the page directory pointer

table’s first three page directories are reused in an exact

copy of a page directory pointer table in the task structure

list

If there are other page directory pointer tables found by our

algorithm that do not match one of those three groups, they

are flagged as potentially malicious, just as they are for non-

PAE. Test results of this are discussed in Section 7.4.

Because the userspace page directory entries have been

zeroed out or overwritten by a new process, no data from the

process’ pages is available, which makes forensic analysis

difficult.

7.3. Rogue processes in Windows XP

In Microsoft Windows XP non-PAE systems, all parsed page

directories should be a member of the Windows XP process

list or an exact copy of a legitimate page directory. Parsed

paging structures not found in the Windows XP process list

are suspicious.

In PAE Windows XP, after a process has been terminated,

the page directories are zeroed out, clearing all of the pointers

to the pages of data. (Note that this does not necessarily

include the page content data, just the paging structure of

pointers to the data.) The page directory pointer tables are left

partially intact, with only the address of page table 0 being

overwritten.

On a clean system, all of the page directory pointer tables of

valid processes will be found using our algorithm, along with

http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) 2 8e3 734
several terminated processes and duplicate page directory

pointer tables of valid processes, where the page directory

pointer table points to the same 4 page directories as a valid

page directory pointer table as mentioned in Section 6.2. In

PAE Windows XP systems, there is significantly more noise

(copies, terminated processes) than in a typical Linux system;

however, it is still possible to spot rogue paging structures not

conforming to the copy or terminated process model with an

algorithm similar to the Linux algorithm in Section 7.2.

Additional research in Windows XP systems is needed to

finalize this algorithm and is left to future work.

7.4. Detecting processes hidden by Linux rootkits

To test our code against real-world attacks, we investigated

kernel-level rootkits. Kernel-level rootkits modify running

kernel code and data structures so that an attacker can hide

malicious processes.We tested our algorithmon several Linux

kernel-level rootkits to verify that we could locate the address

spaces associated with the hidden processes. The tested

rootkits used several different methods for modifying the

kernel including redirecting system calls, unlinking tasks

from lists, and hooking the Virtual File System (VFS).

For each test, we took two images of the same system:

a clean image and an infected image. We created the first

image by launching an unhidden “malicious” process without

the target rootkit installed, allowing us to record the CR3 of the

“malicious” process for verification later. The image is

considered clean even with the “malicious” process running

because we created the “malicious” process for testing

purposes only, and all the process does is print a message

once per second. After creating the clean image, we infected

the system with the target rootkit and hid the “malicious”

process. Then, we took a second snapshot of the memory to

create the infected image. After creating both images, we

tested our tool to determine if we could locate the hidden

process in the infected image.

One of the rootkits we tested was the Enyelkm rootkit

(2010). This rootkit can be used to hide files, processes, and

directories by modifying the system call table. In particular, it

modifies the getdents system call that is used by the ps utility

to list processes. The getdents system call lists directory

entries, and ps uses the getdents system call to list the

currently running processes as defined in the /proc directory.

To test theEnyelkmrootkit,wecreatedaclean imageandan

infected imageasdescribed above.We recorded theCR3 for the

“malicious”process in theclean imageand results showed that

we were able to find the paging structures for a process with

a matching CR3 for both the clean image and the infected

image. In the infected system, the ps utility did not show the

“malicious” process as aprocess thatwas active on the system.

However, our algorithm was able to locate the “malicious”

paging structures in the infected image. We also walked

the kernel’s list of tasks in the infected image and found the

“malicious” process. To increase the sophistication of the

rootkit, we enhanced it by removing the “malicious” process

from the kernel’s list of task structures. Additional function-

ality would need to be included with the rootkit to ensure the

process is properly scheduled, but for our purposes, this

modification is sufficient to test ouralgorithm.Afteradding the
patch, we created two new images and ran our tool on the

infected image in a consistency-checking mode. This mode

compares the process list found fromwalking the kernel’s task

structures against the process list found using our algorithm.

The results of this test are shown below:

.

Match: 0x0DA39000 e dd. terminated ¼ F

Match: 0x0DA15000 e sshd. terminated ¼ F

WARNING!: process at 0x0D9BB000; no match.

userspace entries: 3 terminated ¼ F

Match: 0x0D959000 e sshd. terminated ¼ F

Match: 0x0D954000 e hald. terminated ¼ F

Match: 0x0D8AB000 e sshd. terminated ¼ F

Process at 0x0D888000; no match.

userspace entries: 1 terminated ¼ T

Match: 0x0D87A000 e bash. terminated ¼ F

.

The results show information for each potential CR3 value

located in the image using our algorithm. If a corresponding

CR3 is found in the kernel’s list of tasks as well, then “Match”

is printed along with the process name. For example, the

“sshd” process was found with a CR3 value of 0x0DA15000. If

a corresponding CR3 is not found in the kernel’s list of tasks

and the process does not appear to be terminated

(terminated ¼ F), then a warning message is printed. In this

case, the warning message accurately locates the hidden

process with a CR3 value of 0x0D9BB000.

We repeated our tests with other process-hiding rootkits

including Intoxonia and Override. Both Intoxonia and Over-

ride modify the system call table to hide processes. We were

also able to find the paging structures for processes hidden by

these rootkits.
8. Separating VM host and guest processes

Modern �86 platforms support virtualization, which can help

users run multiple operating systems on the platform at the

same time, but it can also help attackers isolate their mali-

cious processes. The ability to detect and analyze the use of

virtualization in memory images has become increasingly

more important as virtualization becomes more and more

widespread (Gartner). Since we are interested in locating all

paging structures for processes in a given memory image, it is

important for us to consider how our algorithm will work on

memory images containing virtual machines. We can apply

our same algorithm to find processes associated with the

virtual kernel and host kernel.

8.1. Kernel-mapping size distinguishes processes

If a virtual machine is running during the creation of

a memory image, the virtual machine’s processes will also be

present in the physical memory image. Because the virtual

machine’s kernel is likely to be a different size than the host’s

kernel, it is very simple to distinguish between the two kernels

because of the kernel mapping size. Our algorithm can locate

both sets of paging structures in one run if the flag threshold is

http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002

Table 3 e Partial output of processing a Linux memory
image with a running Linux virtual machine (VMWare).

Physical
addressa

Num. 0x1E3
entries

Num. userspace
entries

0x1EDE1000 127 48

0x1E80F000 127 9

0x1D83B000 127 10

0x1D833000 127 3

0x1D5E2000 79 6

0x187D4000 79 15

0x10008000 79 8

0x05B08000 79 19

a Physical address is base of page directory (CR3).

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) 2 8e3 7 35
adjusted lower. If virtualization is suspected for a given

memory image, in many cases running the algorithm with

a lower flag threshold count will locate the guest kernel’s

paging structures. For example, in Table 3, a non-PAE Ubuntu

8.04 host with 512 MB of memory has 127 0x1E3 kernel

mappings, while the non-PAEUbuntu 6.10 VMWare guestwith

320 MB of memory has 79 0x1E3 kernel mappings. The

mapping count will be identical for all processes belonging to

a particular Linux kernel; the mapping count will be similar

for processes belonging to a particular Windows XP kernel.
8.2. Fingerprinting operating systems

Another advantage of using�86-based detectionmechanisms

is the ability to simultaneously locate paging structures for

different operating systems. In addition to being able to

separate paging structures by kernel size (mapping count), the

flag values may differ as well. For example, we can obtain

separate paging structures for a Linux host running

a Windows XP virtual machine. Not only will the flag entry

counters be different for the separate kernels, the flags will

have different values between Windows XP and Linux

systems. An example of this is shown in Fig. 3 where a non-
Fig. 3 e This partial output contains the analysis of a 1 GB mem

containing a 512 MB PAEWindows (XP SP2) guest virtual machin

table and four corresponding page directories. The Linux entrie

other userspace entries.
PAE Linux host contains a PAE Windows XP SP2 guest in

VMWare (2010).

The case where one kernel is non-PAE and another is PAE

requires an extra step. Analyzing the image in non-PAE mode

(4 KB scans) will find all page directories, including each of the

four page directories belonging to page directory pointer

tables for PAE mode. To find the page directory pointer tables,

a second pass through thememory imagemust be performed,

scanning at the page directory pointer table size (32 bytes).
9. Limitations of the algorithm

There are a number of important limitations that apply to our

algorithm. We describe these limitations below and suggest

enhancements to our algorithm to mitigate these limitations.

The first limitation we consider is that we make some

assumptions about when and how page tables are laid out in

memory. For example, we assume that there are no false page

directories that have data similar to the expected hardware

flags (0x1E3/0x63) in the correct positions. This noise would

introduce false positives into our algorithm. We could

enhance our algorithm to further inspect targets of potential

page tables to help eliminate these false positives. On the

other hand, we also assume that legitimate paging structures

are intact such that none of the 0x1E3/0x63 entries have been

modified. However, if these flags have been modified, then

much of the underlying system must also be modified to

properly maintain a stable system. Furthermore, in such

a case, we could loosen the constraints in our algorithms to

minimize the false negatives.

The second limitation we consider is that we assume

pagingwill be turned on and in use for all running processes. If

a process does not have paging structures associated with it,

then this algorithm will not be able to locate it. It is certainly

possible to create a process that runs on the�86 platformwith

paging turned off, but this is much more difficult than using

the existing support for process creation, especially when the
ory image with a Non-PAE Linux (Ubuntu 8.04) host

e. TheWindows XP entries show the page directory pointer

s marked “terminated” have a pointer in entry 0 and no

http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) 2 8e3 736
system must support both processes with paging turned on

and processes with paging turned off. Furthermore, it may be

possible to detect processes that are running with paging

turned off using a different algorithm.

The third limitation we consider is that although our

algorithm relies mostly on �86 structures, we use some

information about the running operating system to enhance

our algorithm. This means that not all of our algorithm’s

features will apply to every memory image. For example, Red

Hat, Fedora, and similar derivatives often put a pointer in

entry zero of the page directory evenwhen the process has not

been deleted or removed from the task structure list, so our

method for detecting potential deleted processes will not

work correctly on these systems. This case provides less

information about whether or not the paging structures

belongs to a former process; however, the more general parts

of our algorithm will still apply.
10. Future work

10.1. Hypervisor detection

From a security and forensics perspective, virtualization

detection is becoming increasingly important because of the

concept of hypervisor rootkits, where a hypervisor hides itself

from the running instance of the operating system (Rutkowska,

2006; Zovi, 2006). Several research groups propose that hidden

hypervisors can be detected by searching for �86 structures

present in physical memory (Ptacek a,b; Fritsch, 2008).

Assuming that an unaltered physical memory dump could

be acquired by some external DMA (Direct Memory Access)

means such as Firewire or PCI, our algorithm could potentially

be applied to locate page structures showing the mappings of

another kernel or hypervisor if it uses paging. For example,

Bluepill, an ultra-thin hypervisor rootkit, takes 16 pages of

memory (Rutkowska, 2007). If a hypervisor makes use of

paging like Bluepill does, it should be possible to detect its

private �86 paging structures and distinguish them from its

guest paging structures. Research about common hypervisor

flag settings and number of expected page directory entries is

left for future work.

10.2. Expansion of current work

The majority of our testing and fine-tuning focused around

a Linux-based platform. We would like to further research

how our algorithms can be applied to different versions of the

Windows operating system. We have positive results from

Windows XP, and future work would involve expanding our

testing toWindowsVista andWindows 7 platforms.Wewould

also like to expand to Mac OS X and other platforms imple-

menting �86 paging. Additionally, we would like to expand

our rogue paging structures detection algorithms to other

operating systems.

Also, our algorithms center around 32-bit operating

systems. A natural expansion of our work would be to include

64-bit operating systems. This would include researching the

kernel fingerprint in the page directory entries by observing

the least significant bits on the flag values and adjusting our
algorithm accordingly, and also analyzing additional levels of

paging structures.

10.3. PAE e speed of algorithm

In a non-PAE image, parsing out paging structures takes a few

seconds on a standard machine for moderate sized memory

images (2 GB or less). But for PAE mode, we must now add an

additional step toourmemoryparsingandalsomust analyze in

32-byte block increments (the size of a page directory pointer

table) instead of 4096 byte increments (the size of a page

directory), making it roughly 128 times slower, as the incre-

ments we analyze must be 128 (4096/32) times smaller.

However, the approximate location of these page directories in

memory are predictable, dependent on platform so a faster

algorithmwould need to attempt to leverage the expected page

directory location information without incrementing the false

negatives (misses), asmalwaremayhideanywhere inmemory.

10.4. Additional testing

Another goal would be to test our algorithms on more mal-

ware and rootkits. Many Linux kernel-level rootkits that hide

processes operate by hooking the Virtual File System (VFS),

and we have successfully demonstrated that our algorithm

locates paging structures for processes hidden by this method

as implemented in several different rootkits. We would like to

expand on our rootkit and malware detection as rootkits

continue to evolve.
11. Conclusions

We have described an algorithm that can locate paging struc-

tures in a memory image based on �86 paging structures. The

algorithm is adjustable for varied platforms and has been

successfully tested on different versions of both Linux and

Windows XP. Our algorithm can detect rogue paging structures

for processes hidden in memory based on locating the paging

structures. For memory images containing virtual guest oper-

ating systems, in many cases our algorithm can successfully

determine the paging structures for each kernel. Using our

algorithm, forensic examiners may be able to more easily

discover complete process lists for a variety ofmemory images.

Acknowledgments

Thank you to AndrewTappert, TomO’Connor, and Sandy Ring

of the Pikewerks Corporation (Pikewerks Corporation, 2010)

for allowing us to collaborate on your Second Look� project.

Thank you to AFRL/RYT ATSPI Technology Office for spon-

soring the Small Business Technology Transfer grant that

funded the initial research of our algorithm. Distribution

Statement Ae Approved for public release: distribution is

unlimited. Public release document number 88 ABW-10-1535.

The work upon which this publication is based was per-

formed pursuant to AFRL Contract number FA8650-07-C-1205

under Subcontract Agreement to Pikewerks Corporation.

http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 0) 2 8e3 7 37
Thank you to technical staff of The Johns Hopkins

University Applied Physics Laboratory for help installing the

test rootkits and for the helpwith developing the algorithm for

Linux PAE rogue paging structures detection.
r e f e r e n c e s

Arium. ARIUM e Intel JTAG debugger, http://www.arium.com/
products/3/Intel-JTAG-Debuggers.html; January 2010.

Bovet DP, Cesati M. Understanding the Linux kernel. 3rd ed.
Sebastopol, CA: O’Reilly Media, Inc.; 2006.

BurdachM.Physicalmemory forensics.USA:BlackHat;August2006.
DFRWS. Digitial forensics research workshop. Forensics

challenge, http://www.dfrws.org/2008/challenge/index.shtml;
2008.

Enyelkm rootkit, http://www2.packetstormsecurity.org/cgi-bin/
search/search.cgi?searchval%ue¼enyelkm.

Fritsch H. Analysis and detection of virtualization-based rootkits.
Munchen: Technische Universitat; August 2008.

Gartner. Gartner says virtualization will be the highest-impact
trend in infrastructure and operations market through 2012,
http://www.gartner.com/it/page.jsp?id¼638207.

Intel Corporation. Intel�64 and IA-32 architectures software
developer’s manual, vol. 3A. Denver, CO: Intel Corporation;
2007.

Kornblum JD. Using every part of the buffalo in Windowsmemory
analysis. Digital Investigation 2007;4:24e9. December 2006.

Microsoft Corporation. Microsoft windows debugger (WinDbg),
http://msdn.microsoft.com/en-us/library/cc266321.aspx.

Petroni N, Walters A, Fraser T, Arbaugh W. FATKit: a framework
for the extraction and analysis of digital forensic data from
volatile system memory. Digital Investigation December 2006;
4:197e210.

Pikewerks Corporation. Second look�, http://pikewerks.com.
Ptacek T. Side-channel detection attacks against unauthorized

hypervisors, http://matasano.com.
Ptacek T. The �86 memory system and why it’s hard to virtualize

securely, http://matasano.com.
PyFlag, http://www.pyflag.net.
Russinovich M, Solomon D. Microsoft Windows internals. 4th ed.

Redmond, WA: Microsoft Press; 2005.
Rutkowska J. Subverting vista kernel for fun and profit. USA: Black

Hat; August 2006.
Rutkowska J. IsGameOver() anyone? USA: Black Hat; August 2007.
Schuster A. Searching for processes and threads in Microsoft

Windows memory dumps. Digital Investigation June 2006;3S:
S10e6.

Schuster A. Memory analysis: copies of page directories, http://
computer.forensikblog.de/en/2007/05/copies_of_page_
directories%.html; 2007a.

Schuster A. Memory analysis: searching for page directories (1),
http://computer.forensikblog.de/en/2007/05/searching_page_
directories_1%.html; 2007b.

Schuster A. Memory analysis: searching for page directories (2),
http://computer.forensikblog.de/en/2007/05/searching_page_
directories_2%.html; 2007c.

Stewart J. Truman e The reusable unknown Malware analysis
net, http://www.secureworks.com/research/tools/truman.
html.

VMWare. VMWare server, http://www.vmware.com/.
Wu J. Search PDEs in memory dump ofWindows XP SP2 with PAE,

http://jingqiwu.blogspot.com/2007/12/search-pdes-in-
memory-dump-of-windows%.html; 2007.

Zovi DD. Hardware virtualization-based rootkits. USA: Black Hat;
August 2006.

http://www.arium.com/products/3/Intel-JTAG-Debuggers.html
http://www.arium.com/products/3/Intel-JTAG-Debuggers.html
http://www.dfrws.org/2008/challenge/index.shtml
http://www2.packetstormsecurity.org/cgi-bin/search/search.cgi?searchval%25ue=enyelkm
http://www2.packetstormsecurity.org/cgi-bin/search/search.cgi?searchval%25ue=enyelkm
http://www2.packetstormsecurity.org/cgi-bin/search/search.cgi?searchval%25ue=enyelkm
http://www.gartner.com/it/page.jsp%3Fid%3D638207
http://www.gartner.com/it/page.jsp%3Fid%3D638207
http://msdn.microsoft.com/en-us/library/cc266321.aspx
http://pikewerks.com
http://matasano.com
http://matasano.com
http://www.pyflag.net
http://computer.forensikblog.de/en/2007/05/copies_of_page_directories%25.html
http://computer.forensikblog.de/en/2007/05/copies_of_page_directories%25.html
http://computer.forensikblog.de/en/2007/05/copies_of_page_directories%25.html
http://computer.forensikblog.de/en/2007/05/searching_page_directories_2%25.html
http://computer.forensikblog.de/en/2007/05/searching_page_directories_2%25.html
http://computer.forensikblog.de/en/2007/05/searching_page_directories_2%25.html
http://computer.forensikblog.de/en/2007/05/searching_page_directories_2%25.html
http://www.secureworks.com/research/tools/truman.html
http://www.secureworks.com/research/tools/truman.html
http://www.vmware.com/
http://jingqiwu.blogspot.com/2007/12/search-pdes-in-memory-dump-of-windows%25.html
http://jingqiwu.blogspot.com/2007/12/search-pdes-in-memory-dump-of-windows%25.html
http://dx.doi.org/10.1016/j.diin.2010.08.002
http://dx.doi.org/10.1016/j.diin.2010.08.002

	Locating ×86 paging structures in memory images
	Introduction
	Background on ×86 paging
	Related work
	Linux algorithm to locate processes
	First pass of algorithm
	Second pass of algorithm

	Generalized algorithm
	Algorithm applied to Microsoft Windows XP
	Algorithm applied to 36-bit PAE

	Verifying algorithm with clean images
	Linux verification
	Windows XP verification

	Rogue process detection
	Rogue processes in Linux without PAE
	Rogue processes in Linux with PAE
	Rogue processes in Windows XP
	Detecting processes hidden by Linux rootkits

	Separating VM host and guest processes
	Kernel-mapping size distinguishes processes
	Fingerprinting operating systems

	Limitations of the algorithm
	Future work
	Hypervisor detection
	Expansion of current work
	PAE – speed of algorithm
	Additional testing

	Conclusions
	Acknowledgments
	References

