

KAFÉ: Kernel Analysis Front-End

for Software Assurance

Luanne Burns J. Aaron Pendergrass Julian Grizzard
Johns Hopkins University Applied Physics Lab

luanne.burns@jhuapl.edu james.pendergrass@jhuapl.edu julian.grizzard @jhuapl.edu

Abstract

 KAFÉ is a tool for kernel inspection, navigation,
iterative drill down and analysis with an easy to use

interface for searching and sorting on kernel files,

functions, types, variables, macros, and symbols.

Although debuggers are geared towards run-time

program analysis, the information they rely on offers

a powerful basis for the static analysis of programs.

The KAFÉ relational database is automatically gen-

erated by analyzing the “Debug With Arbitrary

Records Format” information. While we gain a

great deal of insight into the workings of the Linux

kernel and could hopefully recognize potentially
problematic violations of data isolation and encapsu-

lation, the scope of the KAFÉ tool goes behind kernel

inspection and could be applied to program under-

standing in general. This paper shows how this ap-

proach differs from static source code analysis, run-

time analysis or debuggers. The database generation

and architecture are described and the interface is

illustrated.

1. Background

 Understanding complex computer programs re-
mains a critical challenge facing the software devel-

opment world. Even relatively simple software de-

veloped by a single expert developer quickly ap-

proaches a level of complexity where the author is

unable to fully explain its behavior. Single author

software is exceedingly rare. Most software is devel-

oped by large, possibly geographically isolated

groups, and must be understood not only by the orig-

inal developers but also by new team members, quali-

ty assurance and testing teams, and numerous others.

These problems are nearly as old as the computer

program itself, and thus a whole class of software
tools exists to aid the software analyst in his attempts

to understand a program. Such tools are frequently

defined as either static or run-time analyzers.

 Static source code analyzers attempt to produce

information about a program’s behavior by examin-

ing the source of the program. Most frequently these

analyses use source-code inspection to produce a

form of cross referenced report on the lexical struc-

tures discovered. The most well known tool in this

class is probably CScope [12] which was originally

developed at Bell Labs for the PDP-11; CScope im-

plements what is described as a "fuzzy parser" for C-

like languages; the resultant parse tree is used to

guide the creation of a database including symbol

names, type specifications, and function call graph

data. Another prime example of static source code

analysis is the Linux Cross Reference project (LXR)

[5] which uses similar techniques as CScope to gen-
erate a database with a conveniently cross-linked web

front-end.

 Tools based on static source code analysis can be

very powerful, but they have some well known draw-

backs. Many source code analyzers are unable to ful-

ly deal with issues of scoping and namespaces. Prob-

lems for source code analyzers also arise when the

target source code uses compiler-specific extensions,

exercises ambiguous aspects of the language specifi-

cation, or includes source in a language not directly

supported by the analyzer (such as inline assembly).
Some tools attempt to overcome these hardships by

putting additional burden on the programmer. Dox-

ygen [13] is an excellent system which uses source

code analysis to create a call graph and interaction

diagrams for defined structures; these automatic fea-

tures can be supplemented by including precisely

formatted comments in the source code to document

the inputs, outputs, and purpose of each function or

type. The disadvantages of source code analysis

mostly stem from the fact that writing an effective

source code analyzer is akin to writing a compiler

where the target architecture is the human consumer.
Traditional compiler design targeting computer archi-

tecture is hard; the source code analyzer must tackle

the same problems of parsing, symbol and type reso-

lution, intermediate processing, and output genera-

tion. All of these are nontrivial tasks, and unlike ge-

nerating machine code, there is no accepted specifi-

cation for generating output that will effectively con-

vey program meaning to the human consumer. The

development of the world- wide-web, hypertext, and

database-backed web applications have provided po-

werful new mechanisms for static, source based ana-
lyzers to display their outputs, but even with this ar-

senal of display mechanisms, the best tools still seem

mailto:luanne.burns@jhuapl.edu
mailto:james.pendergrass@jhuapl.edu
mailto:luanne.burns@jhuapl.edu

unable to capture more than simple pattern matching

over the source code. For a deeper understanding, the

analyst is typically forced to sift through a pile of

syntactically related though semantically irrelevant

hyperlinks, or to go back and read the source code.

 Run-time analyzers, on the other hand, are able to
provide effective and compelling information on the

observable behavior of the software under inspection.

Probably the crudest form of runtime analysis

(though probably still the most popular) is the use of

excessively verbose output during program execution

to allow the programmer to compare her own mental

model of the intended behavior with the actual com-

putations performed by the program. Though this

technique has repeatedly proved its usefulness in de-

bugging program errors, it is comparable to using a

large rock to hammer nails: effective, but inefficient.

Where the rock fails to exploit the mechanical advan-
tages which led to the development of a hammer,

output statements fail to exploit the computational

advantages which led to the development of the de-

bugger. Debuggers are marvelous tools which are

only slightly less popular amongst programmers than

the output statement. Although few programmers are

likely familiar with all the features of the average

debugger, most are skilled in the use of "break-

points", the inspection of local and global variable,

and manipulating the program stack. Other runtime

tools such as IDAPrro [2] profilers and memory
checkers are also available and in wide use, but for

analyzing cryptic behavior the debugger is still very

popular.

 Debuggers are powerful tools for the analysis of

running programs primarily because of the wealth of

information provided by a compiler when building

debuggable program images. In standard usage, com-

pilers typically discard a lot of information when

building a binary image from source code. For exam-

ple, type information, variable names, line numbers,

and inlined invocations are all irrelevant to the actual

execution of the program, and thus are discarded by
the compiler. However, when used to generate a de-

buggable program image, compilers store this infor-

mation within the executable program file. It is the

availability of this information that allows the debug-

ger to provide powerful features for suspending ex-

ecution on a particular line or function, decoding va-

riables in a running program, listing all active sym-

bols, manipulating the stack, and so on.

 Although debuggers are geared towards run-time

program analysis, the information they rely on offers

a powerful basis for the static analysis of programs.
The rest of this paper describes a system which ex-

tracts this information from the Debug With Arbitrary

Records Format [1] sections of a debuggable Linux

Executable and Linking Format (ELF) [3] file, stores

the information in a relational database, and provides

a convenient web front-end for interactive browsing

and querying of the database. To demonstrate the

applicability of this system, it has been applied to the

Linux Kernel. We provide examples of interesting
statistics gathered from the resultant database, and

describe the potential for tools which may act as ad-

ditional consumers of the database to produce more

interesting results. We also provide examples and a

comparison with LXR. We conclude by discussing

some of the shortcomings of our system and compar-

ing its functionality to that provided by other pro-

gram analysis tools including DWARF2-XML [6],

that use debugging information as the basis for in

depth static program analysis.

2. DWARF Analysis & Database

Generation

 To aid our ongoing analysis of the Linux Kernel's
data structures and flow control, we developed a tool

which extracts information contained in the DWARF

debugging information generated by enabling the "-

g" flag to the GNU Compiler Collection (gcc) C

compiler. We chose to develop such a tool after de-

ciding against the development of a source code

analysis tool for a project as complex as the Linux

Kernel. Instead of facing the perils of C preprocess-

ing, parsing, inline assembly, and symbol and na-

mespace recognition, we decided to rely on the robust

program manipulation powers of the gcc toolchain,

and reuse the work done by others such as the GDB
[11] and libdwarf [8] in the loading of the far more

easily understood DWARF debugging information.

The tool we developed, which we have dubbed

dwarf2db, uses preexisting libraries for extraction of

the DWARF information records, performs some

translation and correlation amongst records, and po-

pulates a highly interrelated MYSQL [10] database

with the results of the inspection.

The DWARF Format

 DWARF is the widely accepted format for storing

debugging information for ELF program executables,

and has also been ported to the Mach-O binary for-

mat used by Apple Inc.'s Darwin/Mac OS X. The

DWARF format was originally developed with the
ELF specification by the Unix System Laboratories.

Compiling a source file with DWARF debugging

information enabled adds several debug-specific sec-

tions to the resultant object file. These sections are

prefixed with ".debug_", and are not mapped into

memory when the program is run under normal cir-

cumstances (i.e., not in a debugger). The majority of

the DWARF information is stored in the

".debug_info" section of the object file. Other sec-

tions include ".debug_str", ".debug_line",

".debug_loc" which contain ancillary data that is refe-
renced from the ".debug_info" section (specifically

those listed contain a string lookup table, line number

information, and memory locations of variables re-

spectively).

 The ".debug_info" section contains a tree of "De-

bug Information Entries" (DIEs). Each DIE corres-

ponds to a construct in the original program such as a

function definition, a structure or record definition, or

a variable declaration. To identify what construct is

represented, each DIE is labeled with a tag such as

DW_TAG_subprogram, DW_TAG_structure_type,

or DW_TAG_variable. In addition to its tag, each
DIE has a set of associated attributes. The attributes

contain information describing the specific instance

of the construct. For example, a DW_TAG_variable

may have a name attribute (DW_AT_name), a type

specifier (DW_AT_type), and a list of locations at

which the variable is stored (DW_AT_locations). The

scope of the variable, however, is implicitly defined

by its parent DIE. If the variable is local to a subrou-

tine, then it would be a child of the DIE representing

that subroutine. Otherwise it would be the child of

the compilation unit in which it is declared (a compi-
lation unit corresponds roughly to a '.o' object file).

The DWARF format supports references by assign-

ing each DIE a unique ID, thus the DW_AT_type

attribute of the variable described above would likely

contain a reference to the DIE representing the varia-

ble's type. Our tool uses the libdwarf to walk the DIE

tree contained in the ".debug_info" section and stores

the information contained in the DIE attributes in a

relational database. Additionally, the tool examines

the TXT section of the object file (the section which

contains executable machine code) to extract a com-

plete disassembly of the code, and a partial call graph
identifying the source and target functions of all uses

of the x86 'call' instruction with a constant target ad-

dress.

Database Design

 The design of the generated database was moti-

vated by our desire to understand the numerous struc-

tures and type definitions of the Linux Kernel. Our
view is that if we understand the types, and where

they are used, we gain a great deal of insight into the

workings of the Linux kernel and could hopefully

recognize potentially problematic violations of data

isolation and encapsulation. With this goal in mind,

we divided the space of possible DIE tags into three

categories: DIEs concerning datatypes, DIEs con-

cerning variables, and DIEs concerning functions.

Each of these major categories is represented as a

table in the database, and as a top level browse-able

element in the web interface.

Figure 1. Example Hierarchy Database
Schema

 However, these categories do not directly map
onto the range of DIE types since many different DIE

types may all be used to describe data structures, but

may have different permissible attributes or children

DIEs.

 For example, typedef statements are represented

by DW_TAG_typedef DIEs which may have

attributes indicating the base type, the name of the

definition, and the location of the definition in the

source code, whereas C struct definitions are

represented by DW_TAG_structure_type DIEs which

may have similar attributes but do not have a base
type, and may contain children DIEs describing the

children of the structure being defined. Other DIEs

related to datatypes include :

DW_TAG_array_type,

DW_TAG_base_type,

DW_TAG_const_type,

DW_TAG_enumeration_type,

DW_TAG_pointer_type,

DW_TAG_subroutine_type,

DW_TAG_union_type, and

DW_TAG_volatile_type.

 Since each of these DIE types describe program
constructs with different parameters, each one has a

different set of meaningful attributes and children.

These are described in detail in [the TIS DWARF-2

format specification]. Similarly, there are numerous

DIE types which describe program variables. These

include:

DW_TAG_variable,

DW_TAG_formal_parameter, and

DW_TAG_member.

 To account for this, the database includes a table

for each DIE type which represents a specialization

of one of the major categories. These tables contain

values for the attributes specific to the represented
specialization, and share an ID value with an entry in

the table for the primary category being specialized.

Figure 1 shows an example of this pattern in which

the Structures and Typedefs table both provide spe-

cializations of the primary Types table. Since both

structures and typedefs are associated with a file in

which the structure/typedef is declared, both tables

contain a file_id field which is used as a key in the

Files table, however not all types have such a file

(specifically primitive types do not have an asso-

ciated file) so this field is not a part of the main

Types table. The "kind" column of the Types table
indicates which table contains the specialization of

that row, and the "id" column is used as the key. This

system provides a weak form of object-oriented style

polymorphic inheritance, and allows the database to

concisely store all information pertinent to a given

DIE.

 The database contains other tables with additional

data that does not directly belong to one of the de-

scribed categories. There are three primary reasons

why such a table is included in the design. One rea-

son is to represent attributes whose value is common
to many DIE's such as the file in which a variable,

datatype, or function is defined or declared. A second

reason is to hold multi-part data not suitable for sto-

rage in a single table column such as the memory

locations at which a particular variable is stored

throughout its lifetime. The third reason is to hold

information not directly related to any DIE but still of

potential value to the analyst such as the call graph

and disassembly data generated by direct analysis of

the TXT section.

Figure 2a. dwarf2db Relationships

 Figure 2b. dwarf2db Relationships

 In total the database contains twenty six different

tables with 95 columns. Of these columns, fifty six of

them are used specifically as keys for multi-table
relationships. Figures 2a and 2b depict some of the

meaningful relationships modeled within the data-

base. The recognition, storage, and retrieval of these

numerous relationships are the source of our system's

tremendous potential as an aid to program analysis.

The next section describes a web-application which

allows user directed browsing and searching of the

generated database. Later sections describe the poten-

tial for tools which interact either directly with the

database, or through the web applications XML inter-

face to implement completely automatic verification
of aspects of the Linux Kernel's behavior.

3. Kernel Analysis Front End

Architecture

 To exploit the database generated using dwarf2db,

we developed a web application using the Ruby-On-

Rails (Ruby-on-Rails) framework to provide a basic

Object Relational Mapping. This web application has

been dubbed "The Kernel Analysis Frontend" or

KAFÉ (pronounced like café) for short. Ruby on

Rails was chosen for its reputation as a tool for rapid

prototyping of web applications and the extensive

documentation available. It should not be construed

as the only option for consumption of the generated

database. JavaScript [4], CSS [9] menus, and PHP

[14] were also employed in the web interface and for

communication with MySQL.

Interface

 The KAFÉ home page gives a brief KAFÉ synop-

sis and provides a dropdown box from which the user

may select a database of interest. After selecting the

database, he may choose to start browsing Files,

Functions, Types, Variables, Macros, or Symbols.

Type and Variables have subcategories, e.g. Types

are further broken down into Typedefs, Pointers,

Primitives etc while Variables have sub-categories

such as Globals and Locals. Figure 3 shows the

KAFÉ home page.

Figure 3. KAFÉ home page

 Figure 4 shows the screen displayed after the user

selects ‘Files’ from the options presented. All file

names are shown along with a count of their Types,

Functions, and Globals. The arrows to the right of
the column headers allow easy sorting. The horizon-

tal menu across the top contains the same options

presented on the home page for accessing Files,

Functions, Types, Variables, Macros, or Symbols as

well as returning to the home page. The Database

combo box drop down, as on the home page, allows

the user to switch databases. The text box next to the

file name header allows searching for that column.

For all KAFÉ screens, these controls are consistent.

If more than one column is searchable, its column

header will have a text entry box and the conditions

will be ANDED on search. The X next to the text
entry box clears the search condition and the magni-

fying glass launches the search (same as hitting en-

ter).

 To better illustrate KAFÉ’s features, we will step

through an example where our task is to begin explo-

ration in an attempt to find all processes and process

ids. Let’s suppose that we start by browsing Types

from the home page and start our search by looking

for task_struct. Figure 5 shows the Types listing af-

ter KAFÉ has executed our search. From this listing

we notice that it is not the FunctionType variant that

we are interested in but, more specifically, only the

structure variant so we can further constrain the

search, as shown in Figure 6. This page shows us the

task_struct struct, its size, number of instances, and
the file in which it is located. Note that both the file

name and the task_struct type itself are links which

can be clicked on for more information. Clicking on

the task_struct name produces the screen shown in

Figure 7 depicting the struct itself. From here we can

drill down further into the struct, link to LXR, or

browse to the file in which the struct is defined. The

field pid is a member of task_struct and is its asso-

ciated process ID; clicking on it will bring up more

detail on pid, as shown in Figure 8. This process can

be repeated as the user wishes to explore and drill

down to deepen program understanding.
 Similarly, suppose a user wanted to find the ex-

ecutable name for a task. Once again, a reasonable

starting point would be the task_struct type as shown

in Figure 6. Within the kernel, a process address

space, as well as all the information related to it, is

kept in an mm_struct descriptor so the user can ex-

plore this path by clicking on it in the listing. From

the mm_struct detail, he can drill deeper in his explo-

ration to exe_file, file, f_path, path, dentry,dentry*,

dname, and qstr detail and finally, to name, which is

the task name.
 KAFÉ can be used for program understanding

with programs other than the Linux kernel. Any pro-

gram compiled with the allyesconfig option set can

be used by dwarf2db to produce an underlying data-

base for the KAFÉ web interface. KAFÉ presents the

program, its types, structures, variables and files in a

meaningful and browsable format that aids in under-

standing no matter what the underlying program is.

Figure 4. KAFÉ menus and controls

Figure 5. Searching Types for task_struct

Figure 6. Constraining search for task_struct on Type variant

Figure 7. task_struct detail

Figure 8. pid detail

Comparison to LXR

 LXR (formerly "the Linux Cross Referencer") is a

software toolset for indexing and presenting source

code repositories. It was originally intended for the

Linux source code repository but has been used for

other code repositories as well. LXR shares some of

the same objectives with KAFÉ but differs in a few

significant ways.

 LXR uses the Linux source as its database input

while KAFÉ uses a specifically compiled Linux ker-
nel with debug symbols as database input. The source

that LXR uses could be compiled

into a large number of different binaries
depending on the configuration while for KAFÉ, the

kernel is only meant for a certain class of machines

and architecture, e.g. powerpc architecture code in

binary compiled for 86 architecture. LXR captures

all architectures, definitions, #defines. KAFÉ re-

moves sections from structures that are #defined out:

 e.g. #ifdef some_disabled_option ... #endif“

 LXR includes comments, shows the actual source

code for functions and allows searching for types,

functions, and free-text, but it is sometimes difficult

to specify searches because the configuration is un-

known and/or buried in the many displayed and

extraneous #defines. In KAFÉ, the type space is
unique so searches are not ambiguous; additionally

size and offset information are available in KAFÉ,

LXR cannot display this information because it is not

available in the source.

 LXR and KAFÉ can be used in conjunction and,

in fact, KAFÉ provides hyperlinks to LXR pages to

make the synergy more readily available to the ana-

lyst. KAFÉ is a tool for understanding the structure

of the kernel and allows focusing on one in particu-

lar. Sometimes the struct names and member names

are insufficient and that's where the source code

helps. Note the link to LXR from the KAFÉ screens
shown in Figures 7 and 8.

4. Future Work

 Aside from these problems in implementation,

dwarf2db is constrained by several direct conse-

quences of our refusal to utilize source-code analysis.

The most immediately obvious difficulty is that while

we are able to gain substantial understanding of the

way in which functions and types interact using the

DWARF information, our ability to understand the

implementation of a particular function is limited to

the raw disassembly of the compiled version of the
function. Recognizing that source analysis based

packages have a dramatic advantage in this particular

problem space, KAFÉ includes numerous links to

LXR in order to provide a "best of both worlds" type

approach.

 Related to our inability to capture function beha-

vior is the inability to detect the use of C preproces-

sor macros. This is an obvious result of not using the

source code since preprocessor macros are expanded

in the first phase of compilation. Some limited sup-

port for describing the available macros may be poss-
ible by analyzing the ".debug_macinfo" section. Re-

cognizing the use of macros would require pattern

matching the disassembly of functions against the set

of possible compiled macros. While this may be

possible it is likely to result in many false-positives

(pieces of code which are not macro invocations

identified as being uses of a macro), and false nega-

tives (uses of macros not being recognized). Also, it

would likely take a long time given the large number

of macros available in the Linux Kernel, and the

number of ntuples of assembly language instructions

that would have to be matched against them.

 The final two major shortcomings of DWARF

based analysis are the inability to penetrate the com-

monly used abstraction technique of structure em-

bedding, and the difficulty of deducing which va-

riables are used as the arguments to subcalls. The

Linux Kernel makes substantial use of embedded
structures to provide abstract data types; for example

a linked list of some structure type "foo" can be

achieved by embedding an element of type

"list_head" within the declaration of the structure

"foo". The kernel makes available functions includ-

ing "list_add", "list_delete", and the macro

"list_foreach" for manipulating linked lists. If a func-

tion is given a "list_head" pointer and would like to

recover the "foo" in which the list_head is embedded,

the macro

CONTAINER_OF(struct,member,ptr)

is used which operates by subtracting the offset of the

structure member from the ptr in and casting it to the

structure type. Since these structure embedding rely

on macros and behavior implemented entirely within

a function, it is extremely difficult to determine e.g.,

what kind of elements are on a list. The task of de-

ducing the arguments passed to functions is difficult

because this information is not recorded directly in

the DWARF info, and the argument passing mechan-

ism is compiler specific, and typically varies based
on special attributes of the called function. Despite

these shortcomings, DWARF analysis in general and

dwarf2db in particular offer some features that cannot

be easily matched by source based tools.

 As described previously, the strength of

dwarf2db's approach is its ability to recognize and

model relationships between program elements. Be-

cause source code analyzers typically have only a

limited understanding of scope and namespaces they

are often unable to distinguish between different uses

of the same identifier. For example, searching for the

identifier "inode" in LXR using the 2.6.18 kernel
yields 12 structure definitions, 13 variable defini-

tions, and 1234 references (which may be declara-

tions of variables of type struct inode, or references

to variables named inode). On the other hand, be-

cause the DWARF information includes implicit

scoping and namespace information, KAFÉ is able to

distinguish between usages of the identifier "inode"

and can be used to quickly lookup the type "struct

inode" or a particular variable named "inode". Simi-

larly, although most uses of identifiers in LXR source

displays are hyperlinks, they link to the results of a
lexical search for that identifier. In a large project

such as the Linux Kernel, identifier names are often

reused so these links can lead to an overwhelming

excess of irrelevant information when trying to track

the use of a particular variable (e.g., following a link

on the identifier "i" from any function that uses this

common name for a loop counter). DWARF based

analysis is capable of directly tracking a particular

instance of a variable without being confused by
identifier collisions resulting from an inadequate no-

tion of scoping.

 Although we arrived at the idea independently, the

notion of using DWARF2 information to produce

tools for static program analysis was previously in-

vestigated by Gondow, et. al. [7] in describe their

development of an XML schema for communicating

the information contained in DWARF2 data. They

arrived at many of the same conclusions we did:

source based analysis tools rely on difficult and im-

precise algorithms, they are typically limited by their

inability to understand the deeper semantics of inter-
related program concepts (such as variables and their

types), and DWARF information is relatively stan-

dard, easily parsed, and contains substantial relational

information that is obscured by source code. They

even identified the same technique for developing

call graphs from the executable code section, and

developed a hybrid system DWARF/source system

(in much the same vein that we chose to offer links to

LXR's source driven engine). Their technique differs

from ours primarily in the intended use of their tool;

while we focus on developing a system for modeling,
visualizing, and consuming the relational aspects of

the DWARF information, their main focus was on

developing a lightweight portable transmission sys-

tem for DWARF in order to enable specialized tools

to easily consume the data for their own analyses.

5. Conclusions

 KAFÉ is a tool for kernel inspection, navigation,

iterative drill down and analysis with an easy to use

interface and a backend database allowing searching

and sorting on files, functions, types, variables, ma-

cros, and symbols. KAFÉ is a front end to an auto-
matically generated relational database generated by

analyzing the dwarf information. The dwarf2db is

capable of producing a backend database for any

program compiled with the allyesconfig option set.

Using the database, KAFÉ then provides a web front-

end for simplifying program understanding. We have

described its use in dynamic analysis and kernel un-

derstanding but it could be extended to any program.

Its use with other tools such as LXR provides an ana-

lyst with a richer set of tools for analysis.

6. References

[1] DWARF, DWARF Debugging Format Standard.
http://dwarf.freestandards.org/Home.php, 2006

[2] Eagle, C., The IDA Pro Book. No Starch Press,
2006.

[3] ELF, Executable and linking format.
http://www.skyfree.org/linux/references/ELF_Format.
pdf.

[4] Flanagan, D., JavaScript: The Definitive Guide,
3rd edition. CA: O’Reilly & Associates, 1998.

[5] Gleditsch, A. G. Linux Cross-Reference.
http://lxr.linux.no.

[6] Gondow, K. DWARF2-XML. Japan Advanced In-
stitute of Science and Technology (JAIST),
http://www.jaist.ac.jp/˜gondow/ dwarf2-xml/.

[7] Gondow, K. S., Binary-Level Lightweight Data In-

tegration to Develop Program Understanding Tools for
Embedded Software in C. Proceedings of the 11th
Asia-Pacific Software Engineering Conference (AP-
SEC'04), 2004, pp. 336-345.

[8] LIBDWARF, DWARF Access Library, Unix In-
ternational, 1994.

[9] Lie, H. B., Cascading style sheets, WWW Consor-
tium, http://www.w3.org/pub/WWW/TR/WD-cssl,
1996.

[10] MYSQL, MySQL Reference Manual.
http://dev.mysql.com/.

[11] Stallman, R. P., Ruby-on-Rails.
http://rubyonrails.org, Debugging with GDB. Free

Software Foundation. 1994.

[12] Steffen, J. ,The CScope Program: Berkeley UNIX
Release 3.2., 1981.

[13] van Heesch, D. Doxygen,
http://www.doxygen.org.

[14] Welling, L. A., PHP and MySQL Web Develop-
ment. SAMS, http://www.php.net, 2001.

