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Abstract 

     KAFÉ  is a tool for kernel inspection, navigation, 
iterative drill down and analysis with an easy to use 

interface for  searching and sorting on kernel files, 

functions, types, variables, macros, and symbols. 

Although debuggers are geared towards run-time 

program analysis, the information they rely on offers 

a powerful basis for the static analysis of programs. 

The KAFÉ relational database is automatically gen-

erated by analyzing the “Debug With Arbitrary 

Records Format” information.  While we gain a 

great deal of insight into the workings of the Linux 

kernel and could hopefully recognize potentially 
problematic violations of data isolation and encapsu-

lation, the scope of the KAFÉ tool goes behind kernel 

inspection and could be applied to program under-

standing in general.  This paper shows how this ap-

proach differs from static source code analysis, run-

time analysis or debuggers.  The database generation 

and architecture are described and the interface is 

illustrated. 

1. Background 

     Understanding complex computer programs re-
mains a critical challenge facing the software devel-

opment world. Even relatively simple software de-

veloped by a single expert developer quickly ap-

proaches a level of complexity where the author is 

unable to fully explain its behavior. Single author 

software is exceedingly rare. Most software is devel-

oped by large, possibly geographically isolated 

groups, and must be understood not only by the orig-

inal developers but also by new team members, quali-

ty assurance and testing teams, and numerous others. 

These problems are nearly as old as the computer 

program itself, and thus a whole class of software 
tools exists to aid the software analyst in his attempts 

to understand a program. Such tools are frequently 

defined as either static or run-time analyzers.  

     Static source code analyzers attempt to produce 

information about a program’s behavior by examin-

ing the source of the program. Most frequently these 

analyses use source-code inspection to produce a 

form of cross referenced report on the lexical struc-

tures discovered. The most well known tool in this 

class is probably CScope [12] which was originally 

developed at Bell Labs for the PDP-11; CScope im-

plements what is described as a "fuzzy parser" for C-

like languages; the resultant parse tree is used to 

guide the creation of a database including symbol 

names, type specifications, and function call graph 

data. Another prime example of static source code 

analysis is the Linux Cross Reference project (LXR) 

[5] which uses similar techniques as CScope to gen-
erate a database with a conveniently cross-linked web 

front-end.  

     Tools based on static source code analysis can be 

very powerful, but they have some well known draw-

backs. Many source code analyzers are unable to ful-

ly deal with issues of scoping and namespaces. Prob-

lems for source code analyzers also arise when the 

target source code uses compiler-specific extensions, 

exercises ambiguous aspects of the language specifi-

cation, or includes source in a language not directly 

supported by the analyzer (such as inline assembly). 
Some tools attempt to overcome these hardships by 

putting additional burden on the programmer. Dox-

ygen [13] is an excellent system which uses source 

code analysis to create a call graph and interaction 

diagrams for defined structures; these automatic fea-

tures can be supplemented by including precisely 

formatted comments in the source code to document 

the inputs, outputs, and purpose of each function or 

type. The disadvantages of source code analysis 

mostly stem from the fact that writing an effective 

source code analyzer is akin to writing a compiler 

where the target architecture is the human consumer. 
Traditional compiler design targeting computer archi-

tecture is hard; the source code analyzer must tackle 

the same problems of parsing, symbol and type reso-

lution, intermediate processing, and output genera-

tion. All of these are nontrivial tasks, and unlike ge-

nerating machine code, there is no accepted specifi-

cation for generating output that will effectively con-

vey program meaning to the human consumer. The 

development of the world- wide-web, hypertext, and 

database-backed web applications have provided po-

werful new mechanisms for static, source based ana-
lyzers to display their outputs, but even with this ar-

senal of display mechanisms, the best tools still seem 
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unable to capture more than simple pattern matching 

over the source code. For a deeper understanding, the 

analyst is typically forced to sift through a pile of 

syntactically related though semantically irrelevant 

hyperlinks, or to go back and read the source code.  

     Run-time analyzers, on the other hand, are able to 
provide effective and compelling information on the 

observable behavior of the software under inspection. 

Probably the crudest form of runtime analysis 

(though probably still the most popular) is the use of 

excessively verbose output during program execution 

to allow the programmer to compare her own mental 

model of the intended behavior with the actual com-

putations performed by the program. Though this 

technique has repeatedly proved its usefulness in de-

bugging program errors, it is comparable to using a 

large rock to hammer nails: effective, but inefficient. 

Where the rock fails to exploit the mechanical advan-
tages which led to the development of a hammer, 

output statements fail to exploit the computational 

advantages which led to the development of the de-

bugger. Debuggers are marvelous tools which are 

only slightly less popular amongst programmers than 

the output statement. Although few programmers are 

likely familiar with all the features of the average 

debugger, most are skilled in the use of "break-

points", the inspection of local and global variable, 

and manipulating the program stack. Other runtime 

tools such as IDAPrro [2] profilers and memory 
checkers are also available and in wide use, but for 

analyzing cryptic behavior the debugger is still very 

popular.  

     Debuggers are powerful tools for the analysis of 

running programs primarily because of the wealth of 

information provided by a compiler when building 

debuggable program images. In standard usage, com-

pilers typically discard a lot of information when 

building a binary image from source code. For exam-

ple, type information, variable names, line numbers, 

and inlined invocations are all irrelevant to the actual 

execution of the program, and thus are discarded by 
the compiler. However, when used to generate a de-

buggable program image, compilers store this infor-

mation within the executable program file. It is the 

availability of this information that allows the debug-

ger to provide powerful features for suspending ex-

ecution on a particular line or function, decoding va-

riables in a running program, listing all active sym-

bols, manipulating the stack, and so on.  

     Although debuggers are geared towards run-time 

program analysis, the information they rely on offers 

a powerful basis for the static analysis of programs. 
The rest of this paper describes a system which ex-

tracts this information from the Debug With Arbitrary 

Records Format [1] sections of a debuggable Linux 

Executable and Linking Format  (ELF) [3] file, stores 

the information in a relational database, and provides 

a convenient web front-end for interactive browsing 

and querying of the database. To demonstrate the 

applicability of this system, it has been applied to the 

Linux Kernel. We provide examples of interesting 
statistics gathered from the resultant database, and 

describe the potential for tools which may act as ad-

ditional consumers of the database to produce more 

interesting results. We also provide examples and a 

comparison with LXR. We conclude by discussing 

some of the shortcomings of our system and compar-

ing its functionality to that provided by other pro-

gram analysis tools including DWARF2-XML [6], 

that use debugging information as the basis for in 

depth static program analysis. 

 

2. DWARF Analysis & Database  

Generation 

 
     To aid our ongoing analysis of the Linux Kernel's 
data structures and flow control, we developed a tool 

which extracts information contained in the DWARF 

debugging information generated by enabling the "-

g" flag to the GNU Compiler Collection (gcc)  C 

compiler. We chose to develop such a tool after de-

ciding against the development of a source code 

analysis tool for a project as complex as the Linux 

Kernel. Instead of facing the perils of C preprocess-

ing, parsing, inline assembly, and symbol and na-

mespace recognition, we decided to rely on the robust 

program manipulation powers of the gcc toolchain, 

and reuse the work done by others such as the GDB 
[11] and  libdwarf  [8] in the loading of the far more 

easily understood DWARF debugging information. 

The tool we developed, which we have dubbed 

dwarf2db, uses preexisting libraries for extraction of 

the DWARF information records, performs some 

translation and correlation amongst records, and po-

pulates a highly interrelated MYSQL [10] database 

with the results of the inspection. 

 
The DWARF Format 
 

     DWARF is the widely accepted format for storing 

debugging information for ELF program executables, 

and has also been ported to the Mach-O binary for-

mat used by Apple Inc.'s Darwin/Mac OS X. The 

DWARF format was originally developed with the 
ELF specification by the Unix System Laboratories. 

Compiling a source file with DWARF debugging 

information enabled adds several debug-specific sec-

tions to the resultant object file. These sections are 

prefixed with ".debug_", and are not mapped into 



 

 

memory when the program is run under normal cir-

cumstances (i.e., not in a debugger). The majority of 

the DWARF information is stored in the 

".debug_info" section of the object file. Other sec-

tions include ".debug_str", ".debug_line", 

".debug_loc" which contain ancillary data that is refe-
renced from the ".debug_info" section (specifically 

those listed contain a string lookup table, line number 

information, and memory locations of variables re-

spectively).  

     The ".debug_info" section contains a tree of "De-

bug Information Entries" (DIEs). Each DIE corres-

ponds to a construct in the original program such as a 

function definition, a structure or record definition, or 

a variable declaration. To identify what construct is 

represented, each DIE is labeled with a tag such as 

DW_TAG_subprogram, DW_TAG_structure_type, 

or DW_TAG_variable. In addition to its tag, each 
DIE has a set of associated attributes. The attributes 

contain information describing the specific instance 

of the construct. For example, a DW_TAG_variable 

may have a name attribute (DW_AT_name), a type 

specifier (DW_AT_type), and a list of locations at 

which the variable is stored (DW_AT_locations). The 

scope of the variable, however, is implicitly defined 

by its parent DIE. If the variable is local to a subrou-

tine, then it would be a child of the DIE representing 

that subroutine. Otherwise it would be the child of 

the compilation unit in which it is declared (a compi-
lation unit corresponds roughly to a '.o' object file). 

The DWARF format supports references by assign-

ing each DIE a unique ID, thus the DW_AT_type 

attribute of the variable described above would likely 

contain a reference to the DIE representing the varia-

ble's type. Our tool uses the libdwarf to walk the DIE 

tree contained in the ".debug_info" section and stores 

the information contained in the DIE attributes in a 

relational database. Additionally, the tool examines 

the TXT section of the object file (the section which 

contains executable machine code) to extract a com-

plete disassembly of the code, and a partial call graph 
identifying the source and target functions of all uses 

of the x86 'call' instruction with a constant target ad-

dress. 

 

Database Design 
 

     The design of the generated database was moti-

vated by our desire to understand the numerous struc-

tures and type definitions of the Linux Kernel. Our 
view is that if we understand the types, and where 

they are used, we gain a great deal of insight into the 

workings of the Linux kernel and could hopefully 

recognize potentially problematic violations of data 

isolation and encapsulation. With this goal in mind, 

we divided the space of possible DIE tags into three 

categories: DIEs concerning datatypes, DIEs con-

cerning variables, and DIEs concerning functions. 

Each of these major categories is represented as a 

table in the database, and as a top level browse-able 

element in the web interface. 
 

 
Figure 1. Example Hierarchy Database 
Schema 
 

     However, these categories do not directly map 
onto the range of DIE types since many different DIE 

types may all be used to describe data structures, but 

may have different permissible attributes or children 

DIEs.  

     For example, typedef statements are represented 

by DW_TAG_typedef DIEs which may have 

attributes indicating the base type, the name of the 

definition, and the location of the definition in the 

source code, whereas C struct definitions are 

represented by DW_TAG_structure_type DIEs which 

may have similar attributes but do not have a base 
type, and may contain children DIEs describing the 

children of the structure being defined. Other DIEs 

related to datatypes include : 

DW_TAG_array_type,  

DW_TAG_base_type,  

DW_TAG_const_type, 

DW_TAG_enumeration_type, 

DW_TAG_pointer_type, 

DW_TAG_subroutine_type,  

DW_TAG_union_type, and 

DW_TAG_volatile_type.  

     Since each of these DIE types describe program 
constructs with different parameters, each one has a 

different set of meaningful attributes and children. 

These are described in detail in [the TIS DWARF-2 

format specification]. Similarly, there are numerous 

DIE types which describe program variables. These 

include:  

DW_TAG_variable, 



 

 

DW_TAG_formal_parameter, and 

DW_TAG_member.  

     To account for this, the database includes a table 

for each DIE type which represents a specialization 

of one of the major categories. These tables contain 

values for the attributes specific to the represented 
specialization, and share an ID value with an entry in 

the table for the primary category being specialized. 

Figure 1 shows an example of this pattern in which 

the Structures and Typedefs table both provide spe-

cializations of the primary Types table. Since both 

structures and typedefs are associated with a file in 

which the structure/typedef is declared, both tables 

contain a file_id field which is used as a key in the 

Files table, however not all types have such a file 

(specifically primitive types do not have an asso-

ciated file) so this field is not a part of the main 

Types table. The "kind" column of the Types table 
indicates which table contains the specialization of 

that row, and the "id" column is used as the key. This 

system provides a weak form of object-oriented style 

polymorphic inheritance, and allows the database to 

concisely store all information pertinent to a given 

DIE.  

     The database contains other tables with additional 

data that does not directly belong to one of the de-

scribed categories. There are three primary reasons 

why such a table is included in the design. One rea-

son is to represent attributes whose value is common 
to many DIE's such as the file in which a variable, 

datatype, or function is defined or declared. A second 

reason is to hold multi-part data not suitable for sto-

rage in a single table column such as the memory 

locations at which a particular variable is stored 

throughout its lifetime. The third reason is to hold 

information not directly related to any DIE but still of 

potential value to the analyst such as the call graph 

and disassembly data generated by direct analysis of 

the TXT section. 

 

          
Figure 2a. dwarf2db Relationships 

 

          
 Figure 2b. dwarf2db Relationships 
 

     In total the database contains twenty six different 

tables with 95 columns. Of these columns, fifty six of 

them are used specifically as keys for multi-table 
relationships. Figures 2a and 2b depict some of the 

meaningful relationships modeled within the data-

base. The recognition, storage, and retrieval of these 

numerous relationships are the source of our system's 

tremendous potential as an aid to program analysis. 

The next section describes a web-application which 

allows user directed browsing and searching of the 

generated database. Later sections describe the poten-

tial for tools which interact either directly with the 

database, or through the web applications XML inter-

face to implement completely automatic verification 
of aspects of the Linux Kernel's behavior. 

 

3. Kernel Analysis Front End 
 

Architecture 

 
     To exploit the database generated using dwarf2db, 

we developed a web application using the Ruby-On-

Rails (Ruby-on-Rails) framework to provide a basic 

Object Relational Mapping. This web application has 

been dubbed "The Kernel Analysis Frontend" or 

KAFÉ (pronounced like café ) for short. Ruby on 

Rails was chosen for its reputation as a tool for rapid 

prototyping of web applications and the extensive 

documentation available. It should not be construed 

as the only option for consumption of the generated 

database. JavaScript [4], CSS [9] menus, and PHP 

[14] were also employed in the web interface and for 

communication with MySQL. 

 

Interface 

 
     The KAFÉ home page gives a brief KAFÉ synop-

sis and provides a dropdown box from which the user 

may select a database of interest.  After selecting the 

database, he may choose to start browsing Files, 



 

 

Functions, Types, Variables, Macros, or Symbols.  

Type and Variables have subcategories, e.g. Types 

are further broken down into Typedefs, Pointers, 

Primitives etc while Variables have sub-categories 

such as Globals and Locals.  Figure 3 shows the 

KAFÉ home page.  
 

 
Figure 3.  KAFÉ home page 
 

     Figure 4 shows the screen displayed after the user 

selects ‘Files’ from the options presented.  All file 

names are shown along with a count of their Types, 

Functions, and Globals.  The arrows to the right of 
the column headers allow easy sorting. The horizon-

tal menu across the top contains the same options 

presented on the home page for accessing Files, 

Functions, Types, Variables, Macros, or Symbols as 

well as returning to the home page.  The Database 

combo box drop down, as on the home page, allows 

the user to switch databases.  The text box next to the 

file name header allows searching for that column.  

For all KAFÉ screens, these controls are consistent.  

If more than one column is searchable, its column 

header will have a text entry box and the conditions 

will be ANDED on search.  The X next to the text 
entry box clears the search condition and the magni-

fying glass launches the search (same as hitting en-

ter).  

     To better illustrate KAFÉ’s features, we will step 

through an example where our task is to begin explo-

ration in an attempt to find all processes and process 

ids.  Let’s suppose that we start by browsing Types 

from the home page and start our search by looking 

for task_struct.  Figure 5 shows the Types listing af-

ter KAFÉ has executed our search.    From this listing 

we notice that it is not the FunctionType variant that 

we are interested in but, more specifically, only  the 

structure variant so we can further constrain the 

search, as shown in Figure 6.  This page shows us the 

task_struct struct, its size, number of instances, and 
the file in which it is located.  Note that both the file 

name and the task_struct type itself are links which 

can be clicked on for more information.  Clicking on 

the task_struct name produces the screen shown in 

Figure 7 depicting the struct itself.  From here we can 

drill down further into the struct, link to LXR, or 

browse to the file in which the struct is defined.  The 

field pid is a member of task_struct and is its asso-

ciated process ID; clicking on it will bring up more 

detail on pid, as shown in Figure 8.  This process can 

be repeated as the user wishes to explore and drill 

down to deepen program understanding. 
     Similarly, suppose a user wanted to find the ex-

ecutable name for a task.  Once again, a reasonable 

starting point would be the task_struct type as shown 

in Figure 6. Within the kernel, a process address 

space, as well as all the information related to it, is 

kept in an mm_struct descriptor so the user can ex-

plore this path by clicking on it in the listing. From 

the mm_struct detail, he can drill deeper in his explo-

ration to exe_file, file, f_path, path, dentry,dentry*, 

dname, and qstr detail and finally, to name, which is 

the task name. 
     KAFÉ can be used for program understanding 

with programs other than the Linux kernel.  Any pro-

gram compiled with the allyesconfig option set can 

be used by dwarf2db to produce an underlying data-

base for the KAFÉ web interface.  KAFÉ presents the 

program, its types, structures, variables and files in a 

meaningful and browsable format that aids in under-

standing no matter what the underlying program is. 

 

 

 

 
 

 

 

 

 

 



 

 

 
Figure 4. KAFÉ menus and controls 
 
 

 

 
Figure 5. Searching Types for task_struct 
 

 
Figure 6. Constraining search for task_struct on Type variant 
 

 



 

 

 

 

 
 

 
 
Figure 7. task_struct detail 
 

 
 

 
Figure 8. pid detail 
 

Comparison to LXR 
 

     LXR (formerly "the Linux Cross Referencer") is a 

software toolset for indexing and presenting source 

code repositories.  It was originally intended for the 

Linux source code repository but has been used for 

other code repositories as well.  LXR shares some of 

the same objectives with KAFÉ but differs in a few 

significant ways.  

     LXR uses the Linux source as its database input 

while KAFÉ uses a specifically compiled Linux ker-
nel with debug symbols as database input. The source 

that LXR uses could be compiled 

into a large number of different binaries   
depending on the configuration while for KAFÉ, the 

kernel is only meant for a certain class of machines 

and architecture, e.g. powerpc architecture code in 

binary compiled for 86 architecture.  LXR captures 

all architectures, definitions, #defines.  KAFÉ re-

moves sections from structures that are #defined out: 

  

    e.g. #ifdef some_disabled_option ... #endif“ 

 



 

 

     LXR includes comments, shows the actual source 

code for functions and allows searching for types, 

functions, and free-text, but it is sometimes difficult 

to specify searches because the configuration is un-

known and/or buried in the many displayed and 

extraneous #defines. In KAFÉ, the type space is 
unique so searches are not ambiguous; additionally 

size and offset information are available in KAFÉ, 

LXR cannot display this information because it is not 

available in the source. 

     LXR and KAFÉ can be used in conjunction and, 

in fact, KAFÉ provides hyperlinks to LXR pages to 

make the synergy more readily available to the ana-

lyst.  KAFÉ is a tool for understanding the structure 

of the kernel and allows focusing on one in particu-

lar. Sometimes the struct names and member names 

are insufficient and that's where the source code 

helps. Note the link to LXR from the KAFÉ screens 
shown in Figures 7 and 8. 

 

4. Future Work  

 
     Aside from these problems in implementation, 

dwarf2db is constrained by several direct conse-

quences of our refusal to utilize source-code analysis. 

The most immediately obvious difficulty is that while 

we are able to gain substantial understanding of the 

way in which functions and types interact using the 

DWARF information, our ability to understand the 

implementation of a particular function is limited to 

the raw disassembly of the compiled version of the 
function. Recognizing that source analysis based 

packages have a dramatic advantage in this particular 

problem space, KAFÉ includes numerous links to 

LXR in order to provide a "best of both worlds" type 

approach.  

     Related to our inability to capture function beha-

vior is the inability to detect the use of C preproces-

sor macros. This is an obvious result of not using the 

source code since preprocessor macros are expanded 

in the first phase of compilation. Some limited sup-

port for describing the available macros may be poss-
ible by analyzing the ".debug_macinfo" section. Re-

cognizing the use of macros would require pattern 

matching the disassembly of functions against the set 

of possible compiled macros. While this may be 

possible it is likely to result in many false-positives 

(pieces of code which are not macro invocations 

identified as being uses of a macro), and false nega-

tives (uses of macros not being recognized). Also, it 

would likely take a long time given the large number 

of macros available in the Linux Kernel, and the 

number of ntuples of assembly language instructions 

that would have to be matched against them.  

     The final two major shortcomings of DWARF 

based analysis are the inability to penetrate the com-

monly used abstraction technique of structure em-

bedding, and the difficulty of deducing which va-

riables are used as the arguments to subcalls. The 

Linux Kernel makes substantial use of embedded 
structures to provide abstract data types; for example 

a linked list of some structure type "foo" can be 

achieved by embedding an element of type 

"list_head" within the declaration of the structure 

"foo". The kernel makes available functions includ-

ing "list_add", "list_delete", and the macro 

"list_foreach" for manipulating linked lists. If a func-

tion is given a "list_head" pointer and would like to 

recover the "foo" in which the list_head is embedded, 

the macro 

 

CONTAINER_OF(struct,member,ptr)  
 

is used which operates by subtracting the offset of the 

structure member from the ptr in and casting it to the 

structure type. Since these structure embedding rely 

on macros and behavior implemented entirely within 

a function, it is extremely difficult to determine e.g., 

what kind of elements are on a list. The task of de-

ducing the arguments passed to functions is difficult 

because this information is not recorded directly in 

the DWARF info, and the argument passing mechan-

ism is compiler specific, and typically varies based 
on special attributes of the called function. Despite 

these shortcomings, DWARF analysis in general and 

dwarf2db in particular offer some features that cannot 

be easily matched by source based tools.  

     As described previously, the strength of 

dwarf2db's approach is its ability to recognize and 

model relationships between program elements. Be-

cause source code analyzers typically have only a 

limited understanding of scope and namespaces they 

are often unable to distinguish between different uses 

of the same identifier. For example, searching for the 

identifier "inode" in LXR using the 2.6.18 kernel 
yields 12 structure definitions, 13 variable defini-

tions, and 1234 references (which may be declara-

tions of variables of type struct inode, or references 

to variables named inode). On the other hand, be-

cause the DWARF information includes implicit 

scoping and namespace information, KAFÉ is able to 

distinguish between usages of the identifier "inode" 

and can be used to quickly lookup the type "struct 

inode" or a particular variable named "inode". Simi-

larly, although most uses of identifiers in LXR source 

displays are hyperlinks, they link to the results of a 
lexical search for that identifier. In a large project 

such as the Linux Kernel, identifier names are often 

reused so these links can lead to an overwhelming 



 

 

excess of irrelevant information when trying to track 

the use of a particular variable (e.g., following a link 

on the identifier "i" from any function that uses this 

common name for a loop counter). DWARF based 

analysis is capable of directly tracking a particular 

instance of a variable without being confused by 
identifier collisions resulting from an inadequate no-

tion of scoping.  

     Although we arrived at the idea independently, the 

notion of using DWARF2 information to produce 

tools for static program analysis was previously in-

vestigated by Gondow, et. al. [7] in describe their 

development of an XML schema for communicating 

the information contained in DWARF2 data. They 

arrived at many of the same conclusions we did: 

source based analysis tools rely on difficult and im-

precise algorithms, they are typically limited by their 

inability to understand the deeper semantics of inter-
related program concepts (such as variables and their 

types), and DWARF information is relatively stan-

dard, easily parsed, and contains substantial relational 

information that is obscured by source code. They 

even identified the same technique for developing 

call graphs from the executable code section, and 

developed a hybrid system DWARF/source system 

(in much the same vein that we chose to offer links to 

LXR's source driven engine). Their technique differs 

from ours primarily in the intended use of their tool; 

while we focus on developing a system for modeling, 
visualizing, and consuming the relational aspects of 

the DWARF information, their main focus was on 

developing a lightweight portable transmission sys-

tem for DWARF in order to enable specialized tools 

to easily consume the data for their own analyses.  

 

5. Conclusions 

 
     KAFÉ is a tool for kernel inspection, navigation, 

iterative drill down and analysis with an easy to use 

interface and a backend database allowing searching 

and sorting on files, functions, types, variables, ma-

cros, and symbols. KAFÉ is a front end to an auto-
matically generated relational database generated by 

analyzing the dwarf information. The dwarf2db is 

capable of producing a backend database for any 

program compiled with the allyesconfig option set. 

Using the database, KAFÉ then provides a web front-

end for simplifying program understanding. We have 

described its use in dynamic analysis and kernel un-

derstanding but it could be extended to any program. 

Its use with other tools such as LXR provides an ana-

lyst with a richer set of tools for analysis. 
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